检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表执行“生成”操作,将生成“加工数据集”被平台统一管理,并用于后续的发布任务。 平台支持对加工数据集查看基本信息、数据血缘等管理操作,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工
单个图片类数据集支持发布的格式为: 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 创建文本类数据集流通任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据发布
获取模型部署ID 模型部署ID获取步骤如下: 登录ModelArts Studio大模型开发平台。 获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图1
样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至流通图片类数据集。 创建图片类数据集配比任务 创建图片类数据集配比任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据发布
样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至流通文本类数据集。 创建文本类数据集配比任务 创建文本类数据集配比任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据发布
压缩功能。 推理资源:推理单元可用于NLP、CV、专业大模型的模型推理功能, 模型实例可用于预测、科学计算大模型的模型推理功能。 具体订购步骤如下: 使用主账户登录ModelArts Studio大模型开发平台,单击“立即订购”进入“订购”页面。 在“开发场景”中勾选需要订购的大
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数
对于无样本的任务,可以采用让模型分步思考的方法来分解复杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解
输出参数等,开发者可通过拖、拉、拽可视化编排更多的节点,实现复杂业务流程的编排,从而快速构建应用。 工作流方式主要面向目标任务包含多个复杂步骤、对输出结果成功率和准确率有严格要求的复杂业务场景。 父主题: 编排与调用工作流
特点且可以引导观众购买。 微调数据清洗: 下表中列举了本场景常见的数据质量问题以及相应的清洗策略,供您参考: 表1 微调数据清洗步骤 数据问题 清洗步骤与手段 清洗前 清洗后 问题一:数据中存在超链接、异常符号等。 删除数据中的异常字符。 {"context":"轻便折叠户外椅,
通用质量评估 针对文本进行通用质量的评估,例如流畅度、清晰度、丰富度等。 说明: 使用该清洗算子前,请确保有已部署的NLP大模型,具体步骤详见创建NLP大模型部署任务。 父主题: 数据集清洗算子介绍
{"context":["你好,请介绍自己"],"target":"我是盘古大模型"} 创建文本类数据集流通任务 创建文本类数据集流通任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据发布
700、600、500、400、300、250、200、150、100、50hPa高空层次)0点、6点、12点、18点时刻的数据文件,下载步骤示例如下: 注册并登录数据下载平台,在高空变量数据下载链接中: Product type选择Reanalysis。 Variable新选择
行问答对的过滤。 下表列举了该场景常见的数据质量问题,以及相对应的清洗策略,供您参考: 表1 微调数据问题与清洗策略 序号 数据问题 清洗步骤与方式 1 问题或回答中带有不需要的特定格式内容或者时间戳等。 通过编写代码、正则表达式等进行处理,删除或者修改对应的内容,或者直接过滤掉整条数据。
明需要逻辑清晰、无歧义。 设计任务要求 要求分点列举: 要求较多时需要分点列举,可以使用首先\然后,或1\2\3序号分点提出要求。每个要求步骤之间最好换行(\n)分隔断句,单个要求包含一项内容,不能太长。 正负向要求分离: 正负向要求不要掺杂着写,可以先全部列完正向要求,再列负向