检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ile创建的新镜像名称。 <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_3_ascend:20240606
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以下参数取值主要以l
在ModelArts Studio大模型即服务平台部署成功的模型服务支持在其他业务环境中调用。 约束限制 只有“状态”是“运行中”的模型服务才支持被调用。 步骤1:获取API Key 在调用MaaS部署的模型服务时,需要填写API Key用于接口的鉴权认证。 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以 llama2-70b
必须修改。加载tokenizer与Hugging Face权重时,对应的存放绝对或相对路径。请根据实际规划修改。 do_train true 指示脚本执行训练步骤,用来控制是否进行模型训练的。如果设置为true,则会进行模型训练;如果设置为false,则不会进行模型训练。 cutoff_len 4096
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以下参数取值主要以l
标注文件“COMMENTS_114745_result.txt”的内容。 positive positive negative positive OBS上传操作步骤: 执行如下操作,将数据导入到您的数据集中,以便用于模型训练和构建。 登录OBS管理控制台,在ModelArts同一区域内创建桶。如果已存
ile创建的新镜像名称。 <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606
ile创建的新镜像名称。 <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606
必须修改。加载tokenizer与Hugging Face权重时,对应的存放绝对或相对路径。请根据实际规划修改。 do_train true 指示脚本执行训练步骤,用来控制是否进行模型训练的。如果设置为true,则会进行模型训练;如果设置为false,则不会进行模型训练。 cutoff_len 4096
必须修改。加载tokenizer与Hugging Face权重时,对应的存放绝对或相对路径。请根据实际规划修改。 do_train true 指示脚本执行训练步骤,用来控制是否进行模型训练的。如果设置为true,则会进行模型训练;如果设置为false,则不会进行模型训练。 cutoff_len 4096
--base-weight-name 大模型包含lm_head的权重文件名 --draft-weight-name 小模型权重文件名 具体可参考Eagle投机小模型训练章节步骤五:训练生成权重转换成可以支持vLLM推理的格式。 Step2 部署模型 在ModelArts控制台的AI应用管理模块中,将模型部署为一个AI应用。
下命令。 conda activate python-3.9.10 (可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否则忽略这一步。原因是通过opencompass使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution
下命令。 conda activate python-3.9.10 (可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否则忽略这一步。原因是通过opencompass使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution
API概览 ModelArts服务所提供的接口均为自研接口。 通过ModelArts服务自研接口,您可以使用ModelArts Workflow、开发环境、训练管理、AI应用管理及服务管理功能。 工作流管理 表1 Workflow API 说明 获取Workflow列表 获取Workflow列表信息。
需根据模型包结构介绍,将推理代码和配置文件上传至模型的存储目录中。 确保您使用的OBS目录与ModelArts在同一区域。 创建模型操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“模型管理”,进入模型列表页面。 单击左上角的“创建模型”,进入“创建模型”页面。 在“创建模型”页面,填写相关参数。
、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例:
如果对于误检有疑问或者卡死问题无法自行解决,您可以前往ModelArts开发者论坛进行提问或者搜索问题。 约束限制 卡死检测仅支持资源类型为GPU和NPU的训练作业。 操作步骤 卡死检测无需额外配置,作业运行中会自动执行检测。检测到作业卡死后会在训练作业详情页提示作业疑似卡死。如需检测到卡死后发送通知(短信、邮件等)请在作业创建页面配置事件通知。
--base-weight-name 大模型包含lm_head的权重文件名 --draft-weight-name 小模型权重文件名 具体可参考Eagle投机小模型训练章节步骤五:训练生成权重转换成可以支持vLLM推理的格式。 Step4 创建pod 在节点自定义目录${node_path}下执行如下命令创建pod。
--base-weight-name 大模型包含lm_head的权重文件名 --draft-weight-name 小模型权重文件名 具体可参考7 eagle投机小模型训练 步骤五:训练生成权重转换成可以支持vLLM推理的格式 Step4 创建pod 在节点自定义目录${node_path}下执行如下命令创建pod。