检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
pt,需要注意保持一致。 中控模块:盘古-NLP-N1-基础功能模型 说明:该模块需要实现意图识别分类的功能。当输入意图识别模块的是政务问题时,控制下游调用检索模块;当输入不需要调用检索的非政务问题时,不调用检索,直接模型回答问题。实现方法为通过微调获得一个具有二分类能力的模型。
Studio大模型开发平台。 进入需要修改子用户权限的空间,在空间内单击左侧导航栏“空间管理”,在“角色管理”页签,可以查看各角色名称及其权限的描述。 图10 角色管理 单击进入“成员管理”页签。 单击用户列表操作栏的“编辑”。 勾选需要赋予用户的角色,单击“确认”。 移除盘古子用户 当需要删除空间内某个子用户时,可以按如下步骤操作:
调。 类似场景需要的微调数据量视具体情况而定,从经验上来说,若实际场景相对简单和通用,使用几千条数据即可;若场景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数据需要尽可能覆盖产品所提供的功能;数据需要覆盖难易度、长短
如下: 大模型输入: 你是一个广告策划,你的工作是为不同的产品写宣传文案。 以下是一些优秀的宣传文案样例,请参考这些样例,为产品:“%s”编写一段宣传文案。 宣传文案样例1: XXXXX 宣传文案样例2: YYYY 注意:宣传文案中需要包含产品名称;需要突出产品特性;不超过40个字。
t_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服务部署区域一致,例如盘古大模型当前部署在“西南-贵阳一”区域,需要获取与贵阳一区域的对应的项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。
语言类型的SDK代码。 图1 获取SDK代码示例 当您在中间填充栏填入对应内容时, 右侧代码示例会自动完成参数的组装。 图2 设置输入参数 填写输入参数时,deployment_id为模型部署ID,获取方式如下: 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”
或本地服务器进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代:部署后的模型需要持续监控其性能,并根据反馈进行定期更新或再训练。随着新数据的加入,模型可能需要进行调整,以保证其在实际应用中的表现稳定。 在应用阶段,除了将模型嵌入到具体业务流程中外,还需要根据业务
权限管理 如果您需要对华为云上购买的盘古大模型资源,为企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可
想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据格式:多轮问答场景需要按照指定的数据格式来构造,问题需要拼接上历史所有轮对话的问题和回答。比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字
成,则需要增加“话题重复度控制”的值。 知识问答:对于文本生成场景(开放问答、基于搜索内容回答等),从客观上来说,回答需要是确定且唯一的,建议降低“温度”或“核采样”的值(二者选其一调整)。若需要每次生成完全相同的回答,可以将“温度”置为0。 参数的选择没有标准答案,您需要根据任
盘古推理SDK简介 推理SDK概述 盘古大模型推理SDK是对REST API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。 表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(/chat/completions)
步骤2:创建并配置多语言文本翻译插件 本样例场景实现多语言文本翻译插件的创建与配置。 步骤1:获取文本翻译服务Token与调用地址 在创建多语言文本翻译工作流的实践中,需要调用华为云文本翻译服务API,调用前需获取文本翻译服务的Token,获取Token步骤如下: 使用IAM账号进入API Explorer服
单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用总数、调用失败的次数、调用的总Tokens数、以及输入输出的Tokens数等基本信息。 此外,该功能还提供了可视化界面,可额外查看响应时长以及安全护栏拦截次数。 父主题: 调用NLP大模型
“大模型”节点配置完成后,单击“确定”。 配置“结束”节点。 单击“结束”节点,如图11,配置输入参数与指定回复。 图11 配置结束节点输入参数 编排完成的工作流见图12。 图12 多语种翻译工作流编排 步骤2:试运行多语言文本翻译工作流 完成工作流编排后,需要对该工作流进行试运行,以查看工作流效果。工作流试运行步骤如下:
由账号在IAM中创建的用户,是云服务的使用人员,具有身份凭证(密码和访问密钥)。 在我的凭证下,您可以查看账号ID和用户ID。通常在调用API的鉴权过程中,您需要用到账号、用户和密码等信息。 区域(Region) 从地理位置和网络时延维度划分,同一个Region内共享弹性计算、块存储、对象存储、VP
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可能会受到输入长度限制,难以有效处理较为复杂的工作流。 流程型Agent:以工作流为任务执行核心,用户可以通过在画布上“拖拽”节点来搭建任务流程。支持编
息息相关。 配置Prompt Builder步骤如下: 在“Prompt builder”模块,需要在输入框中填写Prompt提示词。 可依据模板填写Prompt,单击“示例”,输入框中将自动填入角色指令模板。 图2 Prompt builder 填写后可通过大模型进行优化,单击“智能优化”,在
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场