检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
dSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;
dSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;
--master_port=$MASTER_PORT \ $PYTHON_SCRIPT \ $PYTHON_ARGS " echo $CMD $CMD 在主机上新建“config.yaml”文件。 “config.yaml”文件用于配置pod,代码示例如下。代码中的“xxxx_train.sh”即为2修改的训练启动脚本。
不需要再进相关转化,即可支持模型训练。 提供对象存储语义,和Posix语义有区别,需要进一步理解。 本地存储 重型训练任务首选 运行所在虚拟机或者裸金属机器上自带的SSD高性能存储,文件读写的吞吐量大,建议对于重型训练任务先将数据准备到对应目录再启动训练。 默认在容器/cache
/scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
/scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
vllm,mindspore、openai。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca"
查询支持的镜像列表 功能介绍 根据指定条件分页查询满足条件的所有镜像。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/images
通过运行的实例保存成容器镜像 功能介绍 运行的实例可以保存成容器镜像,保存的镜像中,安装的依赖包(pip包)不丢失,VS Code远程开发场景下,在Server端安装的插件不丢失。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API
ModelArts入门实践 本章节列举了一些常用的实践案例,方便您快速了解并使用ModelArts完成AI开发。 表1 常用最佳实践 分类 实践案例 描述 适用人群 ModelArts Studio 在ModelArts Studio基于Llama3-8B模型实现新闻自动分类 本案例介绍在ModelArts
service [Unit] Description=buildkitd After=network.target [Service] ExecStart=/usr/local/buildkit/bin/buildkitd [Install] WantedBy=multi-user
使用ModelArts Standard自动学习实现垃圾分类 随着科技发展与人们生活质量的快速提升,生活垃圾分类成为当下越来越热门的话题,常见的生活垃圾分为厨余垃圾蛋壳、厨余垃圾水果果皮、可回收物塑料玩具、可回收物纸板箱、其他垃圾烟蒂、其他垃圾一次性餐盒、有害垃圾干电池、有害垃圾
使用ModelArts Standard自动学习实现垃圾分类 随着科技发展与人们生活质量的快速提升,生活垃圾分类成为当下越来越热门的话题,常见的生活垃圾分为厨余垃圾蛋壳、厨余垃圾水果果皮、可回收物塑料玩具、可回收物纸板箱、其他垃圾烟蒂、其他垃圾一次性餐盒、有害垃圾干电池、有害垃圾
使用ModelArts PyCharm插件调试训练ResNet50图像分类模型 本案例介绍如何将本地开发好的MindSpore模型代码,通过PyCharm ToolKit连接到ModelArts进行云上调试和训练。 开始使用样例前,请仔细阅读准备工作罗列的要求,提前完成准备工作。本案例的步骤如下所示:
dSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;
dSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;
dSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;
vllm,mindspore、openai。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径,推荐使用human-eval-v2-20210705.js
vllm,mindspore、openai。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径,推荐使用human-eval-v2-20210705.js
dSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;