检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
# nerdctl 工具查看 nerdctl --namespace k8s.io image list Step3 制作推理镜像 获取模型软件包,并上传到机器SFS Turbo的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的推理代码AscendCloud-LLM-6
的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.910版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 本文档中的模型运行环境是ModelArts Lite DevServer。 镜像适配的Cann版本是cann_8
REINSTALLINGOS: 重装操作系统中: REINSTALLINGOS_FAILED。重装操作系统失败。 vpc_id String 实例所在虚拟私有云ID。 endpoints Array of EndpointsRes objects 服务器的私有IP信息。 image ServerImageResponse
REINSTALLINGOS: 重装操作系统中: REINSTALLINGOS_FAILED。重装操作系统失败。 vpc_id String 实例所在虚拟私有云ID。 endpoints Array of EndpointsRes objects 服务器的私有IP信息。 image ServerImageResponse
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三:上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.911-xxx.zip和算子包AscendCloud-OPP-6.3.911-xxx.zip到主机中,包获取路径请参见表2。
pytorch_2.1.0 驱动 23.0.6 获取镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.909-xxx.zip软件包中的AscendCloud-AIGC-6.3.909-xxx.zip,AscendCloud-OPP-6.3.909-xxx.zip 说明:
ECS中构建新镜像(二选一) 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6
工具。不管是ModelArts Lite云服务,还是本地Windows/Linux等服务器,安装操作都相同。 登录服务器,激活python虚拟环境。 conda activate [env_name] # 例如使用conda管理python环境(需要确认环境已安装Anaconda)
地址{image_url}获取请参见表1。 docker pull {image_url} Step3 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.908-xxx.zip和算子包AscendCloud-OPP-6.3.908-xxx.zip到主机中,包获取路径请参见表2。
直接填写“预测代码”进行文本预测。 选择“multipart/form-data”时,需填写“请求参数”,请求参数取值等同于使用图形界面的软件进行预测(以Postman为例)Body页签中填写的“KEY”的取值,也等同于使用curl命令发送预测请求上传数据的参数名。 设置完成后,
SMN消息服务 授予子用户使用SMN消息服务的权限。SMN消息通知服务配合CES监控告警功能一起使用。 SMN FullAccess 可选 VPC虚拟私有云 子用户在创建ModelArts的专属资源池过程中,如果需要开启自定义网络配置,需要配置VPC权限。 VPC FullAccess 可选
train_instance_type="modelarts.pool.visual.xlarge", # 专属池的虚拟子规格 train_instance_count=1,
export PYTORCH_NPU_ALLOC_CONF = expandable_segments:False 否,demo.sh添加变量,开启虚拟显存。 export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True 修改yaml文件路径:修改demo
T_S=600 # PYTORCH_NPU_ALLOC_CONF优先设置为expandable_segments:True # 如果有涉及虚拟显存相关的报错,可设置为expandable_segments:False export PYTORCH_NPU_ALLOC_CONF=e
export PYTORCH_NPU_ALLOC_CONF = expandable_segments:False 否,demo.sh添加变量,开启虚拟显存; export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True ②修改路径:修改demo
PU)、CANN(NPU)。 自定义模型使用的预置镜像 AI Gallery提供了PyTorch基础镜像,镜像里已经安装好了运行任务所需的软件,供自定义模型直接使用,快速进行训练、推理。预置镜像的版本信息请参见表3。 表3 AI Gallery预置镜像列表 引擎类型 资源类型 版本名称
ut错误。 PYTORCH_NPU_ALLOC_CONF=expandable_segments:False;llava多卡启动时需要关闭虚拟内存扩展;开启时可能提升模型性能。允许分配器最初创建一个段,然后在以后需要更多内存时扩展它的大小。 --image-input-type:图像输入模式,pixel_values
通过pip在本地或云上开发环境安装AI Gallery SDK(galleryformers)。 pip install galleryformers 建议在虚拟环境(Python 3.8+)中安装AI Gallery SDK,以便管理不同的项目,避免依赖项之间产生兼容性问题。 构建自定义模型。 编写自定义配置类。
ut错误。 PYTORCH_NPU_ALLOC_CONF=expandable_segments:False;llava多卡启动时需要关闭虚拟内存扩展;开启时可能提升模型性能。允许分配器最初创建一个段,然后在以后需要更多内存时扩展它的大小。 --image-input-type:图像输入模式,pixel_values
直接填写“预测代码”进行文本预测。 选择“multipart/form-data”时,需填写“请求参数”,请求参数取值等同于使用图形界面的软件进行预测(以Postman为例)Body页签中填写的“KEY”的取值,也等同于使用curl命令发送预测请求上传数据的参数名。 设置完成后,