检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
odelArts资源池。如果要使用训练作业挂载SFS Turbo功能,则需要配置ModelArts和SFS Turbo间网络直通,以及配置ModelArts网络关联SFS Turbo。 具体操作请参见配置ModelArts和SFS Turbo间网络直通。 图3 ModelArts网络关联SFS
odelArts资源池。如果要使用训练作业挂载SFS Turbo功能,则需要配置ModelArts和SFS Turbo间网络直通,以及配置ModelArts网络关联SFS Turbo。 具体操作请参见配置ModelArts和SFS Turbo间网络直通。 图3 ModelArts网络关联SFS
JupyterLab中文件保存失败,如何解决? 问题现象 JupyterLab中保存文件时报错如下: 原因分析 浏览器安装了第三方插件proxy进行了拦截,导致无法进行保存。 在Notebook中的运行文件超过指定大小就会提示此报错。 jupyter页面打开时间太长。 网络环境原因,是否有连接网络代理。
积参数,如果配置了ZeRO3则推荐使用ZeRO1或者ZeRO2(如果内存够)。 图22 通信小包分析 Communication Retransmission Analysis 单次通信重传将会耗时4秒以上,会导致较严重的通信性能劣化,这类问题通常是由于节点网络配置错误导致,可以
# 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。
3升级操作和24.1.RC2相同),24.1.RC2.3驱动软件包获取地址参考驱动软件包。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux
# 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。
Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资源池,计算节点规格选择s
单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模型中创建的AI应用。
部署的在线服务状态为告警 问题现象 在部署在线服务时,状态显示为“告警”。 解决方法 使用状态为告警的服务进行预测,可能存在预测失败的风险,请从以下4个角度进行排查,并重新部署。 后台预测请求过多。 如果您使用API接口进行预测,请检查是否预测请求过多。大量的预测请求会导致部署的在线服务进入告警状态。
可提升在昇腾硬件后端上运行模型的性能。 AKG的配置也是在模型转换阶段进行配置(即执行converter_lite命令时),通过指定对应的配置文件akg.cfg,设置对应的akg优化级别,并且在模型转换时参考样例进行对应的配置。 # akg.cfg [graph_kernel_param]
cutoff_len=8192 Deepspeed-ZeRO-3 以上为建议值,上述参数值仅供参考,如需配置其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器用户可自行选用配置。 父主题: 训练脚本说明
序列长度cutoff_len 梯度累积值 优化工具 (Deepspeed) 规格与节点数 Qwen-VL Qwen-VL 7B full 2048 gradient_accumulation_steps: 16 ZeRO-3 1*节点 & 8*Ascend lora gradient_accumulation_steps:
Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资源池,计算节点规格选择s
Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B
Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B
在Notebook中修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 必须修改的训练超参配置 参数 示例值 参数说明
在Notebook中修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 必须修改的训练超参配置 参数 示例值 参数说明
Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B
在Notebook中修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 必须修改的训练超参配置 参数 示例值 参数说明