检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
rainJob:setHighPriority”并选中,所有资源选择默认值。 在统一身份认证服务页面的左侧导航选择“用户组”,在用户组页面查找待授权的用户组名称,在右侧的操作列单击“授权”,勾选步骤2创建的自定义策略,单击“下一步”,选择授权范围方案,单击“确定”。 此时,该用户组下的所有用户均有权限通过Cloud
包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.912 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
包结构说明。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_lora_7b.sh 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_sft_7b.sh 最后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_lora_7b.sh 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
标签,同时可在下拉菜单中选择标签“快捷键”。单击“确定”,完成选中音频的标注操作。 当目录中所有音频都完成标注后,您可以在“已标注”页签下查看已完成标注的音频,或者通过右侧的“全部标签”列表,了解当前已完成的标签名称和标签数量。 同步或添加音频 在“数据标注”节点单击“实例详情”
待。当Notebook状态变为“运行中”时,表示Notebook已创建并启动完成。 在Notebook列表,单击实例名称,进入实例详情页,查看Notebook实例配置信息。 在Notebook中打开Terminal,输入启动命令调试代码。 # 建立数据集软链接 # ln -s /
声音分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。 登录Mo
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
def get_rank_table(): rank_table_file_path = os.getenv("RANK_TABLE_FILE") env_ip = os.getenv("ip") # Lite Cluster中的RANK_TABLE_FILE实际名称为
物体检测:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。 登录Mo
文本分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。 登录Mo
拼接而成;若以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:to
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
图像分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。 登录Mo
预测分析:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。 登录Mo
构说明。 AscendFactory是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.912 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。