检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
昇腾能力应用地图 ModelArts支持如下开源模型昇腾NPU进行训练和推理。 DeepSeek系列模型 表1 DeepSeek系列模型 支持模型 应用场景 软件技术栈 指导文档 DeepSeek R1 推理 MindIE DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导
导入模型 导入模型功能包括: 初始化已存在的模型,根据模型ID生成模型对象。 创建模型。模型对象的属性,请参见查询模型详情。 示例模型文件 以PyTorch为例,编写模型文件。PyTorch模型包结构可参考模型包规范介绍。 OBS桶/目录名 ├── resnet │ ├── model
选择需要发布的数据集。 许可证类型 根据业务需求和数据集类型选择合适的许可证类型。 单击许可证类型后面的感叹号可以查看许可证详情。 说明: 部分许可证网站说明地址是海外网站,用户可能会因网络限制无法访问。 谁可以看 设置此数据集的公开权限。可选值有: “公开”:表示所有使用AI Gallery的用户都可以查看且使用该资产。
CPU架构的自定义镜像分别只能运行于对应CPU架构的规格中。 执行如下命令,查看自定义镜像的CPU架构。 docker inspect {自定义镜像地址} | grep Architecture ARM CPU架构的自定义镜像,上述命令回显如下。 "Architecture": "arm64"
> 注册镜像”,进入“注册镜像”页面。 根据界面提示填写相关信息,然后单击“立即注册”。 “镜像源”选择构建好的镜像。可直接复制完整的SWR地址,或单击选择SWR构建好的镜像进行注册。 图2 选择镜像源 “架构”、“类型”和“规格”:根据自定义镜像的实际框架选择。 注册后的镜像会显
<img>img_path</img>\n{your prompt},其中id表示对话中的第几张图片。"img_path"可以是本地的图片或网络地址。 对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0
<img>img_path</img>\n{your prompt},其中id表示对话中的第几张图片。"img_path"可以是本地的图片或网络地址。 对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0
训练迁移快速入门案例 本篇指导是迁移的总体思路介绍,便于用户对迁移过程有一个整体的认识。如果您希望通过具体案例直接实操,请参考《主流开源大模型基于DevServer适配PyTorch NPU训练指导》。该案例以ChatGLM-6B为例,介绍如何将模型迁移至昇腾设备上训练、模型精度对齐以及性能调优。
ModelArts统一镜像列表 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、PyTorch。适用于开发环境,模型训练,服务部署,请参考统一镜像列表。 表1 MindSpore 预置镜像 适配芯片 适用范围 mindspore_2
模型调试 训练完成后,可先在开发环境Notebook中创建本地模型,在开发环境Notebook调试完成后再部署到推理服务上。 只支持使用ModelArts Notebook部署本地服务。 示例代码 在ModelArts Notebook平台,Session鉴权无需输入鉴权参数。其
上传本地文件至JupyterLab Notebook的JupyterLab中提供了多种方式上传文件。 上传文件要求 对于大小不超过100MB的文件直接上传,并展示文件大小、上传进度及速度等详细信息。 对于大小超过100MB不超过50GB的文件可以使用OBS中转,系统先将文件上传O
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
连接远端开发环境时,一直处于"Setting up SSH Host xxx: Downloading VS Code Server locally"超过10分钟以上,如何解决? 问题现象 原因分析 当前本地网络原因,导致远程自动安装VS Code Server时间过长。 解决方法
关注的指标。 此处以“全量指标”方式获取训练作业指标为例,如图2所示,输入具体的指标(例如:ma_container_cpu_util),输入条件(instance_name)和维度值(训练作业ID,在ModelArts控制台的训练详情页中获取),页面会自动显示当前训练作业指定的指标监控曲线。
VS Code连接远端Notebook时报错“XHR failed” 问题现象 VS Code连接远端Notebook时报错“XHR failed”。 原因分析 可能是所在环境的网络有问题,无法自动下载VS Code Server,请手动安装。 解决方法 打开VS Code,选择
报错“An SSH installation couldn't be found”或者“Could not establish connection to instance xxx: 'ssh' ...”如何解决? 问题现象 或 VS Code连接Notebook一直提示选择证书
执行训练任务【旧】 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b SFT全参微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的配置,参数详解可查看训练参数说明,其中【GBS、
执行训练任务【旧】 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b SFT全参微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的配置,参数详解可查看训练参数说明,其中【GBS、