检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Terminated:已停止 Abnormal:异常 secondary_phase String 训练作业二级状态为内部详细状态,可能会增加、修改、删除,不建议依赖。可选值如下: Creating:创建中 Queuing:排队中 Running:运行中 Failed:运行失败 Completed:已完成
如何查看训练作业资源占用情况? 如何访问训练作业的后台? 两个训练作业的模型都保存在容器相同的目录下是否有冲突? 训练输出的日志只保留3位有效数字,是否支持更改loss值? 训练好的模型是否可以下载或迁移到其他账号?如何获取下载路径? 父主题: Standard训练作业
批量删除标签 功能介绍 批量删除标签。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dataset
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
创建图像分类数据集并进行标注任务 本节通过调用一系列API,以创建图像分类数据集并进行标注任务为例介绍ModelArts API的使用流程。 概述 创建数据集并进行标注的流程如下: 调用认证鉴权接口获取用户Token,在后续的请求中需要将Token放到请求消息头中作为认证。 调用
docker build -t koyha_ss-train:0.0.1 . Step4 启动镜像 启动容器镜像。启动前可以根据实际需要增加修改参数,Lora微调启动单卡,finetune微调启动八卡。 docker run -itd --name sdxl-train -v /s
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
查询开发环境实例详情 功能介绍 该接口用于查询开发环境实例详情。 URI GET /v1/{project_id}/demanager/instances/{instance_id} 参数说明如表1所示 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String
查询算法详情 功能介绍 根据算法id查询指定算法。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/algorithms/{algorithm_id}
服务可能会有违规风险,请谨慎关闭。 关闭“内容审核”开关,需要在弹窗中确认是否停用内容审核服务,勾选后,单击“确定”关闭。 复制调用示例,修改参数后用于业务环境调用模型服务API。 示例代码如下所示: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
情况,导致空间不足。 请排查是否使用的是GPU资源。如果使用的是CPU规格的资源,“/cache”与代码目录共用10G,会造成内存不足,请更改为使用GPU资源。 请在代码中添加环境变量来解决。 import os os.system('export TMPDIR=/cache')
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
查询训练作业版本列表 功能介绍 根据作业ID查看指定的训练作业版本。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions 参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型 说明 project_id 是 String
增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的
evaluator.py # 数据集数据预处理方法集 ├── model.py # 发送请求的模块,在这里修改请求响应。目前支持vllm.openai,atb的tgi模板 ├── ... ├── eval_test