检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts自动学习中模型训练图片异常怎么办? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段
ModelArts SDK下载文件目标路径设置为文件名,部署服务时报错 问题现象 ModelArts SDK在OBS下载文件时,目标路径设置为文件名,在本地IDE运行不报错,部署为在线服务时报错。 代码如下: session.obs.download_file(obs_path,
在ModelArts数据集中添加图片对图片大小有限制吗? 在数据管理功能中,针对“物体检测”或“图像分类”的数据集,在数据集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片,其图片大小限制不同,要求上传的图片大小不超过5MB。
标注图片(图像分类) 在标注作业详情页中,展示了此数据集中“全部”、“未标注”和“已标注”的图片,默认显示“未标注”的图片列表。单击图片,即可进行图片的预览,对于已标注图片,预览页面下方会显示该图片的标签信息。 在“未标注”页签,勾选需进行标注的图片。 手工点选:在图片列表中,
如何删除ModelArts数据集中的图片? 登录ModelArts管理控制台,左侧菜单栏选择“数据管理>数据标注”,进入数据标注列表,单击需要删除图片的数据集,进入标注详情页。 在“全部”、“未标注”或“已标注”页面中,依次选中需要删除的图片,或者“选择当前页”选中该页面所有图片,然后单击删除。在
在ModelArts中如何将图片划分到验证集或者训练集? 目前只能指定切分比例,随机将样本划分到训练集或者验证集,不支持指定。 切分比例的指定: 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。
获取训练作业日志的文件名 功能介绍 获取训练作业日志的文件名。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions/{version_id}/log/file-names 参数说明如表1所示。 表1 参数说明 参数 是否必选
这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练集中的图片相似(黑底白字)才可能预测准确。 图8 示例图片 图9 预测结果展示 Step7 清除资源 如果不再需要使用此模型及在线服务,建议清除相关资源,避免产生不必要的费用。
删除图片:您可以依次单击选中图片进行删除,也可以勾选“选择当前页”对该页面所有图片进行删除。 所有的删除操作均不可恢复,请谨慎操作。 修改标注 当数据完成标注后,您还可以进入已标注页签,对已标注的数据进行修改。 基于图片修改 在数据标注页面,单击“已标注”页签,然后在图片列表中
已标注的数据进行修改。 基于图片修改 在数据集详情页面,单击“已标注”页签,然后在图片列表中选中待修改的图片,在右侧“标注”区域中对图片信息进行修改。 修改标签:“标注”区域中,单击编辑按钮,在文本框中输入正确的标签名,然后单击确定按钮完成修改。标签颜色不支持修改。 删除标签:在
在ModelArts中同一个账户,图片展示角度不同是为什么? 有的图片存在旋转角度等属性,不同的浏览器的处理策略不同,对浏览器的兼容性如表1和表2所示。 L代表last,L3-产品版本上线时最新的3个稳定浏览器版本。 如果您当前使用的浏览器版本过低,将在一定程度上影响页面的显示效果,系统会提示您尽快对浏览器进行升级。
创建处理任务,支持创建“特征分析”任务和“数据处理”两大类任务。可通过指定请求体中的复合参数“template”的“id”字段来创建某类任务。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或
针对“图像分类”标注作业 在“待确认”页签中,查看标注难例的图片,其添加的标签是否准确。勾选标注不准确的图片,删除错误标签,然后在右侧“标签名”处添加准确标签。单击“确认”,勾选的图片及其标注情况,将呈现在“已标注”页签下。 选中的图片为标注错误图片,在右侧删除错误标签,然后在标签名处添加“狗”
训练图像分类模型 完成图片标注后,可进行模型的训练。模型训练的目的是得到满足需求的图像分类模型。请参考前提条件确保已标注的图片符合要求,否则数据集校验将会不通过。 前提条件 请确保您的数据集中的已标注的图片不低于100张。 请确保您的数据集中至少存在2种以上的图片分类,且每种分类的图片不少于5张。
大类智能任务。可通过指定“type”参数来单独查询某类任务的列表。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例
查询处理任务列表,包括“特征分析”任务和“数据处理”两大类任务。可通过指定“task_type”参数来单独查询某类任务的列表。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或
针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有1种以上的分类(即1种以上的标签),每种分类的图片数不少于5张。 预测分析:由于预测分析任务的数据集不在数据管
自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理,可以分组打标或者清洗图片。 例如,用户通过搜索引擎搜索XX,将相关图片下载并上传到数据集,然后再使用自动分组,可以将XX图片分类,比如论文、宣传海报、确认为XX的图片、其他。用户可以根据分组结果,快速剔除
pem: No such file or directory”如何解决? 问题现象 原因分析 密钥文件不存在于该路径下,或者该路径下密钥文件名被修改。 解决方法 重新选择密钥路径。 父主题: VS Code连接开发环境失败故障处理
生成1280x1280图片,使用Ascend: 1* ascend-snt9b(64GB),约耗时7.5秒。 图1 生成图片耗时(1) 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(32GB),约耗时9.3秒。 图2 生成图片耗时(2) 不开启Flash