检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用OBSutil作为和OBS交互的工具,如何在本机安装obsutil可以参考obsutil安装和配置。 训练数据、代码、模型下载。(本地使用硬盘挂载或者docker
置kubectl。 图3 kubectl访问集群配置 在节点机器中,输入命令,查看Kubernetes集群信息。如果显示如图图4的内容,则配置成功。 kubectl cluster-info 图4 查看Kubernetes集群信息正确弹出内容 父主题: 准备工作
置kubectl。 图3 kubectl访问集群配置 在节点机器中,输入命令,查看Kubernetes集群信息。如果显示如图4的内容,则配置成功。 kubectl cluster-info 图4 查看Kubernetes集群信息正确弹出内容 父主题: 准备工作
在线服务预测报错ModelArts.4503 在线服务预测报错MR.0105 Method Not Allowed 请求超时返回Timeout 自定义镜像导入模型部署上线调用API报错 在线服务预测报错DL.0105 时序预测-time_series_v2算法部署在线服务预测报错 父主题: 推理部署
),可以在裸金属服务器中通过网络协议挂载使用,SFS支持NFS和CIFS的网络协议。在使用裸金属服务器时, 将数据放在SFS盘中, 并发建立多个NFS链接、并发的读写数据、做大模型训练。 但有时候会出现读取速度变慢的现象,并且SFS提示报错"rpc_check_timeout:939
PyTorch NPU训练指导(6.3.908) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
PyTorch NPU训练指导(6.3.910) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
PyTorch NPU训练指导(6.3.911) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
相关章节 创建单机多卡的分布式训练(DataParallel):介绍单机多卡数据并行分布式训练原理和代码改造点。 创建多机多卡的分布式训练(DistributedDataParallel):介绍多机多卡数据并行分布式训练原理和代码改造点。 示例:创建DDP分布式训练(PyTorch
提交训练作业报错“Invalid OBS path” 使用PyCharm Toolkit提交训练作业报错NoSuchKey 部署上线时,出现错误 如何查看PyCharm ToolKit的错误日志 如何通过PyCharm ToolKit创建多个作业同时训练? 使用PyCharm ToolKit
at/bool,用来表示list中的数据类型。 是 PlaceholderType default 参数默认值,数据类型需要与placeholder_type一致。 否 Any placeholder_format 支持的format格式数据,当前支持obs、flavor、tra
关闭Matmul_all_reduce融合算子的命令: unset USE_MM_ALL_REDUCE_OP 配置后重启推理服务生效。 查看详细日志 查看详细耗时日志可以辅助定位性能瓶颈,但会影响推理性能。如需开启,配置以下环境变量。 export DETAIL_TIME_LOG=1 export
可切换“训练作业”、“推理服务”、“开发环境”页签查看资源池上创建的训练作业、部署的推理服务、创建的Notebook实例。 图1 删除资源池 释放游离节点 如果您的资源中存在游离节点(即没有被纳管到资源池中的节点),您可在“AI专属资源池 > 弹性集群Cluster >节点”下查看此类节点的相关信息。 针
专属资源池计费项 计费说明 在ModelArts进行AI全流程开发时,会产生计算资源的计费,计算资源为进行运行自动学习、Workflow、开发环境、模型训练和部署服务的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 专属资源池 使用计算资源的用量。
描述 是否必填 数据类型 infer_type 推理方式:取值可为real-time/batch/edge。默认为real-time。 real-time代表在线服务,将模型部署为一个Web Service。 batch为批量服务,批量服务可对批量数据进行推理,完成数据处理后自动停止。
PATH 训练数据的日志文件存放路径。训练过程中的迭代次数、LOSS和吞吐数据按照“迭代次数|loss|吞吐”格式记录在日志中,AI Gallery通过环境变量找到日志,从中获取实际数据绘制成“吞吐”和“训练LOSS”曲线,呈现在训练的“指标效果”中。具体请参见查看训练效果。 说明:
filelists文件夹 train.txt和val.txt内容参考如下,为处理后视频数据的目录名字。 图3 train.txt和val.txt内容 训练专家唇形同步鉴别器。 如果使用LRS2数据集,可选择跳过此步骤。如果使用自己的数据集,训练命令参考如下。 python color_syncnet_train
左侧菜单栏选择“解决方案”进入解决方案列表页,单击右上方的“发布”,进入发布解决方案页面。 根据界面提示填写解决方案的相关信息,单击下方的“提交”。 在解决方案列表页可以查看发布的方案信息。 父主题: 合作伙伴
还是公网? 调用API提交训练作业后,能否绘制作业的资源占用率曲线? 如何使用API接口获取订阅算法的订阅id和版本id? 使用SDK如何查看旧版专属资源池列表? 调用API接口创建训练作业和部署服务时,如何填写资源池的参数?