检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据标注 > 标注管理” 在“标注管理”页面,单击操作列的“上线”对数据集进行上线。 图2 上线标注后的数据集 对不再使用的数据集可在操作列执行下线操作。若对当前标注数据集已执行发布操作发布文本类数据集,则不可将该标注数据集下线。
Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据标注 > 标注管理” 在“标注管理”页面,单击操作列的“上线”对数据集进行上线。 图2 上线标注后的数据集 对不再使用的数据集可在操作列执行下线操作。若对当前标注数据集已执行发布操作发布视频类数据集,则不可将该标注数据集下线。
评估任务创建成功后,单击操作列“评估”进入评估页面。 图6 评估数据集质量 在评估页面,可参考评估项对当前数据的问题进行标注,且不满足时需要单击“不通过”,满足则单击“通过”。对于文本类数据集而言,可选择问题内容后,单击鼠标右键进行数据问题的标注。 图7 标记数据集问题 全部数据评估完成后,评估状态显示为“100
在左侧导航栏中选择“数据工程 > 数据评估 > 评估任务”,单击界面右上角“创建评估任务”。 图2 创建评估任务 在“数据集选择”页签选择需要进行评估的加工数据集,并设置抽样规格,即从数据集中抽取一定比例数据用于评估。 图3 选择数据集 单击“下一步”选择需要使用的评估标准。标准选择完成后,单击“下一步”设置评估人员。
简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS数据保护技术说明:https://support.huaweicloud.com/productdesc-obs/obs_03_0375
号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习
文本类数据集支持发布的格式为: 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 自定义格式:文本类数据集可以使用自定义脚本进行数据格式转换。 发布文本类数据集操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间
不改变模型结构参数或引入新要素,以适应数据更新需求。 在实际流程中,通过设定训练指标对模型进行监控,以确保效果符合预期。在微调后,评估用户模型,并进行最终优化,确认其满足业务需求后,进行部署和调用,以便实际应用。 科学计算大模型选择建议 科学计算大模型支持训练的模型类型有:中期
Studio大模型开发平台提供了标注审核功能(即对标注后的数据集进行审核),确保标注结果经过验证和质量控制,提升数据的可靠性和可用性。同时,平台支持对视频类和图片类数据集进行AI预标注,标注员可以在此基础上进行审核和修正,从而有效减少人工标注的工作量,并保证原始数据集内容的完整性。
层次,训练任务会根据您配置的高空层次对模型重新进行训练。 高空变量 设置训练数据的高空变量信息,在“预训练”的场景中也支持您添加或去除新的高空变量,选择后会在变量权重中增加或去除该变量权重,训练任务会根据您配置的高空变量对模型重新进行训练。 表面变量 设置训练数据的表面变量信息,
图片类数据集支持发布的格式为: 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 自定义格式:文本类数据集可以使用自定义脚本进行数据格式转换。 发布图片类数据集操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间
数据标注:在大模型的训练中,数据标注至关重要。平台不仅支持对无标签数据进行手动标注或重新标注,还支持对图片、视频类数据集通过AI预标注技术提升标注效率。AI预标注功能通过自动化的方式为数据集生成初步的标签,用户可以在此基础上进行人工审核和修正,从而大幅度减少人工标注的工作量和时间成本。此外
包含一个签名值,该签名值以请求者的访问密钥(AK/SK)作为加密因子,结合请求体携带的特定信息计算而成。通过访问密钥(AK/SK)认证方式进行认证鉴权,即使用Access Key ID(AK)/Secret Access Key(SK)加密的方法来验证某个请求发送者身份。 父主题:
和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 支持区域: 西南-贵阳一
该标准旨在帮助用户高效评估和优化文本数据的质量,确保数据符合模型训练的要求,提升模型的性能和可靠性。用户可以直接使用该标准进行评估,也可以根据特定业务需求进行自定义调整,确保评估标准与应用场景高度契合,从而为后续的模型训练和优化提供高质量的数据支持。 视频数据质量标准 V1.0:ModelArts
问题三:存在重复数据。 删除重复数据。 略 略 训练模型 自监督训练: 不涉及 有监督微调: 本场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 4 学习率(learning_rate)
单击“确定”,完成参数配置。 连接大模型组件和其他组件。 配置意图识别组件 意图识别组件用于根据用户的输入进行分类并导向后续不同的处理流程。 意图识别组件一般位于工作流前置位置。在对用户的输入进行意图识别时,意图识别组件会通过大模型推理,匹配用户输入与开发者预先定义的描述类别的关键字,并根据匹配结果流向对应处理流程。
和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 模型开发工具链 模型开发
案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如worker-0表示第一个工作节点)进行筛选查看。 图2 获取训练日志 父主题: 训练NLP大模型
创建数据集发布任务 创建数据集发布任务,并进行正式的数据集发布操作,可用于后续的训练任务。 平台支持发布的数据集格式为默认格式、盘古格式、自定义格式,可按需进行数据集格式转换。 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要进行数据集格式转换。当前仅文本类、图片类数据集支持转换为盘古格式。