检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
购买这个服务是不是要先购买其他的配套服务? 否。 父主题: 关于服务购买
附录 各模型支持的最小卡数和最大序列 Ascend-vLLM推理常见问题 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912)
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.908)
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表1。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.908)
准备工作 准备环境 准备代码 准备镜像环境 准备数据(可选) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.909)
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.910)
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.910)
准备权重 获取对应模型的权重文件,获取链接参考表1。 权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.911)
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.911)
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:不同模型训练推荐的NPU卡数请参见不同模型推荐的参数与NPU卡数设置。 硬盘空间:至少200GB。 昇腾资源规格:
查看日志和性能 单击作业详情页面,则可查看训练过程中的详细信息。 图1 查看训练作业 在作业详情页的日志页签,查看最后一个节点的日志,其包含“elapsed time per iteration (ms)”数据,可换算为tokens/s/p的性能数据。 吞吐量(tokens/s/p):global
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:不同模型训练推荐的NPU卡数请参见不同模型推荐的参数与NPU卡数设置。 硬盘空间:至少200GB。 昇腾资源规格:
准备权重 获取对应模型的权重文件,获取链接参考表1。 权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是
准备镜像 镜像方案说明 ECS获取基础镜像 ECS中构建新镜像 ECS中上传新镜像 父主题: 准备工作
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.911)
准备工作 准备环境 准备代码 准备数据 准备镜像环境 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.911)