检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
支持图像任意角度的水平旋转。 目前不支持复杂背景(如户外自然场景、防伪水印等)和文字扭曲图像的文字识别。 用于训练多模板分类器的训练集,需要把各个模板的训练图片打包成一个文件夹并压缩成“zip”包,“zip”包文件大小不超过10M。 例如训练“保险单”模板的训练集,需要把同模板的保险单图
确文字识别的模板类型,明确以哪几种板式图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传两种不同格式的发票图片作为模板,训练的文字识别模型就能识别并提取这两种格式发票上的关键字段。 前提条件 已授权ModelArts服务和对象存储服务(OBS)。
编辑应用 对于已经创建的模板应用,您可以修改模板的配置信息以匹配业务变化。 前提条件 已存在创建的模板应用。 编辑模板配置信息 登录“ModelArts Pro>文字识别套件”控制台。 默认进入“应用开发>工作台”页面。 在“我的应用”页签下,选择应用并单击“操作”列的“查看”。 进入“应用资产”页面。
更新应用版本 在模型构建过程中,您可能需要根据训练结果,不停的调整数据、训练参数或模型,以获得一个满意的模型。 因此您可以修改模型的配置信息以匹配业务变化。每修改一次,更新成一个版本,不同的作业版本之间,能快速进行对比,获得对比结果。 前提条件 已在HiLens套件控制台选择“H
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择“通用实体抽取工作流
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在ModelArts Pro控制台选择“HiLe
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于分类自己所上传的文字内容,也可直接调用对应的API。 部署服务 父主题: 通用实体抽取工作流
模型训练的数据,上传至OBS中。 准备数据 选择数据 在使用通用文本分类工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 选择数据 标注数据(可选) 由于模型训练过程需要大量有标签的数据,如果开发应用时,上传的训练数据集是未标注的,需要对数据集中的数据进行标注。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择“通用文本分类工作流
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。往往不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择“多语种文本分类工作
于您选择的训练数据集。 选择数据 训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练安全帽检测模型。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。 文字识别套件的介绍请参见产品介绍。 预置工作流 文字识别套件当前提供了单模板工作流和多模板工作流,自主构建文字识别模板,识别模板图片中的文字,提供高
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于分类自己所上传的文字内容,也可直接调用对应的API。 部署服务 父主题: 多语种文本分类工作流
默认进入“我的应用”页签。 在“我的应用”页签下,选择已创建的应用,单击操作列的“查看”。 进入应用详情页。 在“开发版本列表”右侧,单击“开发新版本”。 进入新版本工作流的开发页面。 如果之前的版本还没开发完,会弹出“开发新版本”提示框,单击“确认”,进入新版本的开发页面。 图1
默认进入“我的应用”页签。 在“我的应用”页签下,选择已创建的应用,单击操作列的“查看”。 进入应用详情页。 在“开发版本列表”右侧,单击“开发新版本”。 进入新版本工作流的开发页面。 如果之前的版本还没开发完,会弹出“开发新版本”提示框,单击“确认”,进入新版本的开发页面。 图1 开发新版本 在