检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test
紧密中心度算法(closeness) 功能介绍 根据输入参数,执行紧密中心度算法。 紧密中心度算法(Closeness Centrality)计算一批节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。 URI POST /ges/v1.0/{project_id}/h
关联路径算法(n-Paths) 概述 关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型
infomap算法(infomap) 功能介绍 根据输入参数,执行infomap算法。 infomap算法是一种基于信息论的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标为找到最优的社区结构,使节点的层次编码长度最小。 URI POST /ges/v1
k核算法(kcore) 功能介绍 根据输入参数,执行K核算法。 K核算法是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
共同邻居算法(Common Neighbors) 概述 共同邻居算法(Common Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景
最短路径算法(Shortest Path) 概述 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 适用场景 最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。 参数说明 表1 最短路径算法(Shortest
pagerank算法 功能介绍 根据输入参数,执行PageRank算法。 PageRank算法又称网页排名算法,是一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。
TopicRank算法 概述 TopicRank算法12345热线多维度话题排序算法之一。 适用场景 适用于政务12345热线投诉话题排序。 参数说明 表1 TopicRank参数说明 参数 是否必选 说明 类型 取值范围 默认值 sources 是 节点的ID,支持多点输入,csv格式,逗号分割。
d=true,选择一个不依赖于Inedge的算法实现版本计算输出,性能会下降;若directed=false,会报错。 weight 否 String 边上权重。取值为:空或字符串。 空:边上的权重、距离默认为1。 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为1。
topicrank算法(topicrank) 功能介绍 根据输入参数,执行TopicRank算法。 TopicRank算法12345热线多维度话题排序算法之一,适用于政务12345热线投诉话题排序。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
n_paths算法(n_paths) 功能介绍 根据输入参数,执行n_paths算法。 n_paths算法用于寻找图中两节点之间在层关系内的n条路径。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm 表1 路径参数
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
关联预测算法(link_prediction) 功能介绍 根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1
PageRank算法 概述 PageRank算法又称网页排名算法,是一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个Pag
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。
k跳算法(k_hop) 功能介绍 根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
中介中心度算法(betweenness) 功能介绍 根据输入参数,执行中介中心度算法。 中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 URI POST /ges/v1.0/{project_id}/hyg/{g
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数