检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
识别出此图片的数字是“2”。 本案例中使用的MNIST是比较简单的用做demo的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练集中的图片相似(黑底白字)才可能预测准确。
识别出此图片的数字是“2”。 本案例中使用的MNIST是比较简单的用做demo的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练集中的图片相似(黑底白字)才可能预测准确。
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
在ModelArts中训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: Standard模型训练
在ModelArts自动学习中模型训练图片异常怎么办? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明
timm==0.4.12 termcolor==1.1.0 yacs==0.1.8 准备run.sh文件中所需要的obs文件路径。 准备imagenet数据集的分享链接 勾选要分享的imagenet21k_whole数据集文件夹,单击分享按钮,选择分享链接有效期,自定义提取码,例如123456,单击“复制链接”,记录该链接。
Standard自动学习实现口罩检测 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。依据开发者提供的标注数据及选择的场景,无需任何代
local variable 'epoch'” 使用订阅算法训练结束后没有显示模型评估结果 创建训练任务并成功运行, 但是发布到至AI Gallery时, 版本那块显示状态异常 使用python3.6-torch1.4版本镜像环境安装MMCV报错 父主题: 训练作业
llery下载的数据集。单击图标选择您的OBS桶下的任意一处目录,但不能与输出位置为同一目录。 数据集输出位置:用来存放输出的数据标注的相关信息,或版本发布生成的Manifest文件等。单击图标选择OBS桶下的空目录,且此目录不能与输入位置一致,也不能为输入位置的子目录。 图1 下载详情
速训练场景下加速OBS对象存储中的数据访问 ModelArts Standard模型训练提供便捷的作业管理能力,提升用户模型训练的开发效率 提供算法资产的管理能力,支持通过算法资产、自定义算法、AI Gallery订阅算法创建训练作业,使训练作业的创建更灵活、易用 提供实验管理能
物体检测等类型,可在自动学习的数据标注页面,单击“同步数据源”,将OBS中的数据重新同步至ModelArts中。 检查OBS的访问权限 如果OBS桶的访问权限设置无法满足训练要求时,将会出现训练失败。请排查如下几个OBS的权限设置。 当前账号具备OBS桶的读写权限(桶ACLs)
Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
au和ma-cau-adapter,ma-cli命令将不支持创建算法工程,无法在Notebook中基于已有算法工程进行资产(数据、模型权重、算法文件)安装、模型开发、训练和推理部署等任务。如您有任何问题,可随时通过工单或者服务热线(4000-955-988或950808)与我们联系。
“train_url”代替算法中数据来源和数据输出所需的路径。 在使用预置框架创建算法时,根据1中的代码参数设置定义的输入输出参数。 训练数据是算法开发中必不可少的输入。“输入”参数建议设置为“data_url”,表示数据输入来源,也支持用户根据1的算法代码自定义代码参数。 模型
重建、停止或删除训练作业 另存为算法 当您需要修改训练作业的算法时,可以在训练作业详情页面右上角,单击“另存为算法”。 在“创建算法”页面中,会自动填充上一次训练作业的算法参数配置,您可以根据业务需求在原来算法配置基础上进行修改。 订阅算法不支持另存为算法。 重建训练作业 当对创建的训练作业不满意
数据校验:对您的数据集的数据进行校验,是否存在数据异常。 预测分析:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项
为提升训练效果,建议在增量训练时,选择质量较高的数据,提升数据标注的质量。 增量训练的操作步骤 登录ModelArts管理控制台,单击左侧导航栏的自动学习。 在自动学习项目管理页面,单击对应的项目名称,进入此项目的自动学习详情页。 在数据标注页面,单击未标注页签,在此页面中,您可以单击添加图片,或者增删标签。
超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。