检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面实时预测tab页,查找待删除的作业,单击“删除”。如果作业处于“部署完成“状态,需要单击“停止部署”后,方可删除。 删除操作无法撤销,请谨慎操作。 图1 删除作业
安全沙箱机制 背景 当计算节点执行横向联邦训练型作业时,若执行脚本中包含恶意行为,包含但不限于非授权访问其他作业数据、篡改文件和配置、恶意消耗容器资源等场景时,会影响到数据提供方的计算环境安全以及其他学习作业的正常执行。 针对该问题,在边缘节点部署场景中,TICS通过构建Pyth
操作步骤 进入空间管理页面。 单击空间名称进入空间详情页面。 图1 空间详情 单击可信计算环境TAB页。 鼠标单击未信任节点旁边问号按钮,查看节点未信任原因。 图2 可信计算环境 错误码及处理措施 表1 错误码及处理措施 错误码 原因及建议处理措施 TICS.SRV.40000023
合作方登录TICS控制台。进入TICS控制台后,单击页面左侧“通知管理”,进入通知管理页面。 浏览通知信息,查找要加入的空间,单击其所属的“接受邀请”。 图1 通知管理入口 在TICS页面左侧,依次单击“空间管理 > 我参与的空间”,查看空间信息。 父主题: 快速入门
为了在TICS平台实现多方作业,必须先在TICS中邀请成员。 邀请成员 空间成员登录TICS控制台。 在TICS控制台左侧,单击“空间管理”,在“我创建的空间”页签查找需要邀请合作方的空间并单击“邀请合作方”。 在弹出的界面配置待邀请的合作方的“租户名称”和“租户别名”,“租户名称”从合作方侧获取即可,保存后单击“确定”,完成邀请合作方操作。
统计型作业的差分隐私保护 本示例作业,以统计各行业的“企业税收总和”与“用电量总和”,进行统计分析: Select industry, sum(tax_bal), sum(electric_bal) from LEAGUE_CREATOR.tax a join
概述 基于数据胶囊技术,将用户配置属性嵌入到数据加密策略中,只有匹配属性的用户才能打开文件,达到数据出域后仍然主权可控的目的。 进行数据交换的角色分为用数方和供数方,用数方通过发送申请传递数据使用需求;供数方确认使用需求后,创建合约发送到供数方进行签署,一旦合约生效,数据交换作业就可以执行。
场景描述 本章节以“小微企业信用评分”场景为例。 背景信息 社保、水电气和资助金等数据统一存储在某政务云,由不同的局进行管理,机构想单独申请进行企业相关评分的计算会非常困难。 因此可以由市政数局出面,统一制定隐私规则,审批数据提供方的数据使用申请, 并通过华为TICS可信智能计算平台进行安全计算。
TICS使用简介 可信智能计算服务TICS( Trusted Intelligence Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、
支持选择访问截止时间、访问方式、访问次数。 不设置访问次数时,则不限制访问次数。 单击保存或者保存并提交审批。 在“可信数据交换 > 数据申请 > 我创建的”的页签下可以查看、编辑、删除已创建的申请。 父主题: 可信数据交换
and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"] projectId = "{project_id}"
and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"] projectId = "{project_id}"
组合架构 架构说明 图1 架构图例 作业发起方通过计算节点提供的控制台页面,发起多方安全计算作业。 多方安全计算作业在TICS中进行解析和任务计划构建,并下发任务给各个数据参与方所在的计算节点。 参与方计算节点从租户侧网络内的数据中获取数据,并使用安全算法进行加密输出。 数据在TICS提供的服务器中进行机密计算。
and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"] projectId = "{project_id}"
TICS使用流程简介 本文档是一个TICS入门教程,介绍了如何在TICS控制台完成端到端的全流程使用。 可信智能计算服务TICS( Trusted Intelligence Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数
基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了同态加密。DAG图显示了“psi + 同态”的
单击“系统 > 权限 > 角色管理”,选择添加角色,角色名称为“tics_hive_read”,配置角色权限依次单击“集群名 > Hive > Hive读写权限”,勾选后续需要发布的Hive库表的读或者写权限。 图2 添加角色权限 登录MRS Manager,在页面的“系统设置”
获取数据详情 功能介绍 本接口用于获取数据集详情。 调用方法 请参见如何调用API。 URI GET /v1/agents/datasets/{dataset_id} 表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集id。 支持数字,英文字母,下划线,长度32。
产品优势 多域协同 支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow)的联邦计算;
场景描述 数据商业空间中公司B针对公司A的某些数据资产存在业务需求,由于安全性和数据主权的考虑,公司A与公司B基于TICS完成数据资产的交换。基于TICS进行数据资产交换,保证公司A的数据主权、公司B的数据可获得,同时保证交换过程安全可信。 以下是数据拥有方公司A和数据需求方公司B基于TICS平台的操作。