检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu + 华为自研Ascend Snt9B硬件,完成Qwen-VL Finetune训练。
已购买资源包,但使用量超出资源包额度或资源包属性与桶属性不匹配,进而产生按需费用,同时账户中的余额不足以抵扣产生的按需费用。请参考如何查看ModelArts中正在收费的作业?识别产生按需计费的原因,并重新选择正确的资源包或保证账户中的余额充足。 未购买资源包,在按需计费模式下账户的余额不足。 欠费影响 包年/包月
余垃圾蛋壳、厨余垃圾水果果皮、可回收物塑料玩具、可回收物纸板箱、其他垃圾烟蒂、其他垃圾一次性餐盒、有害垃圾干电池、有害垃圾过期药物等。人工识别效率低下、费时费力,AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾
余垃圾蛋壳、厨余垃圾水果果皮、可回收物塑料玩具、可回收物纸板箱、其他垃圾烟蒂、其他垃圾一次性餐盒、有害垃圾干电池、有害垃圾过期药物等。人工识别效率低下、费时费力,AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾
训练作业日志中提示“No module named .*” 用户请按照以下思路进行逐步排查: 检查依赖包是否存在 检查依赖包路径是否能被识别 检查训练作业使用的资源规格是否正确 建议与总结 检查依赖包是否存在 如果依赖包不存在,您可以使用以下两种方式完成依赖包的安装。 方式一(推
安全 责任共担 资产识别与管理 身份认证与访问控制 数据保护技术 审计与日志 服务韧性 监控安全风险 故障恢复 更新管理 认证证书 安全边界
化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。 文本分类:识别一段文本的类别。 使用自动学习功能构建模型的端到端示例,
pCode认证并进行在线预测。 前提条件 提前部署在线服务,具体操作可以参考案例:使用ModelArts Standard一键完成商超商品识别模型部署。 操作步骤 在ModelArts控制台页面菜单栏中,单击“模型部署 > 在线服务”,进入在线服务页面。 单击“授权管理”后,单击创建应用即可创建App应用。
历史待下线案例 使用AI Gallery的订阅算法实现花卉识别 示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MindSpore+Ascend)
认证证书 合规证书 华为云服务及平台通过了多项国内外权威机构(ISO/SOC/PCI等)的安全合规认证,用户可自行申请下载合规资质证书。 图1 合规证书下载 资源中心 华为云还提供以下资源来帮助用户满足合规性要求,具体请查看资源中心。 图2 资源中心 销售许可证&软件著作权证书
ModelArts支持哪些AI框架? ModelArts训练和推理分别对应哪些功能? 如何查看账号ID和IAM用户ID ModelArts AI识别可以单独针对一个标签识别吗? ModelArts如何通过标签实现资源分组管理 为什么资源充足还是在排队? 规格中数字分别代表什么含义? 如何删除预置镜像中不需要的工具
Standard模型训练 使用ModelArts Standard自定义算法实现手写数字识别 基于ModelArts Standard运行GPU训练任务
样例 镜像 对应功能 场景 说明 使用ModelArts Standard自定义算法实现手写数字识别 PyTorch 自定义算法 手写数字识别 使用用户自己的算法,训练得到手写数字识别模型,并部署后进行预测。 从0制作自定义镜像并用于训练(PyTorch+CPU/GPU) PyTorch
如果您想了解如何使用ModelArts Standard一键部署现有的模型,并在线使用模型进行预测,您可以参考使用ModelArts Standard一键完成商超商品识别模型部署。 ModelArts Standard同时提供了自动学习功能,帮助用户零代码构建AI模型,详细介绍请参见使用ModelArts Standard自动学习实现垃圾分类。
人工标注 对于不同类型的数据,用户可以选择不同的标注类型。当前ModelArts支持如下类型的标注作业: 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。
身份认证与访问控制 身份认证 用户访问ModelArts的方式有多种,包括ModelArts控制台、API、SDK,无论访问方式封装成何种形式,其本质都是通过ModelArts提供的REST风格的API接口进行请求。 ModelArts的接口均需要进行认证鉴权以此来判断是否通过身
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型