检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ze个task调度到一个超节点内组成亲和组。 用户向超节点资源池投递训练作业,如果未设置亲和组大小,系统会默认赋值为1。 表56 JobEndpointsResp 参数 参数类型 描述 ssh SSHResp object SSH连接信息。 jupyter_lab JupyterLab
进行表示。 步骤四 在节点机器中Docker登录 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。 图1 复制登录指令 由于使用的容器引擎是containerd,不再是docker,因此需要改写复制的登录指令,将docker进行替换,使用nerdctl工具。
进行表示。 步骤四 在节点机器中Docker登录 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。 图1 复制登录指令 由于使用的容器引擎是containerd,不再是docker,因此需要改写复制的登录指令,将docker进行替换,使用nerdctl工具。
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
针对工作流开发,Workflow提供流水线需要覆盖的功能以及功能需要的参数描述,供用户使用SDK对步骤以及步骤之间的关系进行定义 针对工作流复用,用户可以在开发完成后将流水线固化下来,提供下次或其他人员使用,同时无需关注流水线中包含什么算法或如何实现 图1 Workflow流程 父主题: Standard功能介绍
code_1.85.2-1705561292_amd64.deb安装。 Linux系统用户,需要在非root用户进行VS Code安装。 父主题: 通过VS Code远程使用Notebook实例
${pod_scheduler_name} 图3 scheduler 若重启后,还是会Pending,建议多重复重启几次。 其他实例调度失败问题 首先通过打印Pod日志信息。根据错误信息,可通过访问官网链接:工作负载异常:实例调度失败,进行查找。 父主题: 主流开源大模型基于Lite Cluster适配PyTorch
erTimes的和。config.json文件中默认是16k,用户可以根据自己的推理场景设置。 maxInputTokenLen:输入最大长度。config.json文件中默认是15k,用户可以根据自己的推理场景设置。 maxPrefillTokens:最大prefill tok
} 图3 scheduler 如果重启后,还是会Pending,建议多重复重启几次。 其他实例调度失败问题 首先通过打印Pod日志信息。根据错误信息,可通过访问官网链接:工作负载异常:实例调度失败,进行查找。 父主题: 主流开源大模型基于Lite Cluster适配PyTorch
通过JupyterLab在线使用Notebook实例进行AI开发 使用JupyterLab在线开发和调试代码 JupyterLab常用功能介绍 在JupyterLab使用Git克隆代码仓 在JupyterLab中创建定时任务 上传文件至JupyterLab 下载JupyterLab文件到本地
ode/main.py”。 超参 当资源规格为单机多卡时,需要指定超参world_size和rank。 当资源规格为多机时(即实例数大于 1),无需设置超参world_size和rank,超参会由平台自动注入。 方式二:使用自定义镜像功能,通过torch.distributed.launch命令启动训练作业。
换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行
重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行
ct, save_path=FLAGS.train_url) 复制数据集到本地 复制数据集到本地主要是为了防止长时间访问OBS容易导致OBS连接中断使得作业卡住,所以一般先将数据复制到本地再进行操作。 数据集复制有两种方式,推荐使用OBS路径复制。 OBS路径(推荐)
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 ModelLink微调数据集预处理参数说明
关注安装配置,即开即用。 ModelArts也提供了本地IDE的方式开发模型,通过开启SSH远程开发,本地IDE可以远程连接到调试训练作业中,进行调试和运行代码。本地IDE方式不影响用户的编码习惯,并且调试完成的代码可以零成本直接创建生产训练作业。支持的本地IDE请参考使用PyCharm
表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以
alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this
alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this