检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Parameter分布到不同的NPU 增加卡数重新训练,未解决找相关人员定位。 问题2:访问容器目录时提示Permission denied 解决方法: 由于在容器中没有相应目录的权限,会导致访问时提示Permission denied。可以在宿主机中对相关目录做权限放开,执行命令如下。
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请参考《主流开源大模型基于Lite
控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。 temperature
图8 打开OBS File Browser 方式三:单击“使用默认路径”完成。 图9 使用默认路径上传文件 图10 设置本地文件OBS中转路径 完成OBS中转路径设置后,开始上传文件。 图11 上传文件 解压缩文件包 将文件以压缩包形式上传至Notebook JupyterLab后,
sh文件,来安装依赖以及下载完整代码。 ECS中DockerFIle构建新镜像:在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会尝试自动下载三方依赖源码并安装依赖的pip包,并将以上源码打包至镜像环境中; 训练作业的资源池以及ECS都需要连通公
在generation_config.json中没有将do_sample的值设置为true,与配置的temperature、top_p、top_k等采样参数矛盾。 将“generation_config.json”文件中的“do_sample”的值设置为“true”。 Failed to read user
scheduler实例中NODE_PORTS=8088,8089;端口设置顺序必须与global rank table文件中各全量和增量节点顺序一致,否则会报错。 确保scheduler实例和P、D实例之间网络通畅,检查代理设置例如no_proxy环境变量,避免scheduler访问P、D实例时走不必要的网关。 前提条件
LoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 LoRA+(Efficient Low Rank Adaptation
service [Unit] Description=buildkitd After=network.target [Service] ExecStart=/usr/local/buildkit/bin/buildkitd [Install] WantedBy=multi-user
控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。 temperature
LoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 LoRA+(Efficient Low Rank Adaptation
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100 表示训练step迭代次数,根据实际需要修改。
LoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 LoRA+(Efficient Low Rank Adaptation
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100 表示训练step迭代次数,根据实际需要修改。
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100 表示训练step迭代次数,根据实际需要修改。
表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100
表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100
表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100
参见•针对“物体检测”数据集。 相关问题 智能标注失败,如何处理? 当前智能标注为免费使用阶段,当系统的标注任务过多时,因免费资源有限,导致任务失败,请您重新创建智能标注任务或建议您避开高峰期使用。 智能标注时间过长,如何处理? 当前智能标注为免费使用阶段,当系统的标注任务过多时
方式导入自定义包。 customize_service.py依赖的其他文件可以直接放model目录下,需要采用绝对路径方式访问。绝对路径获取请参考绝对路径如何获取。 ModelArts针对多种引擎提供了样例及其示例代码,您可以参考样例编写您的配置文件和推理代码,详情请参见Mode