检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
例如以下样例: { "conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则
例如以下样例: { "conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则
例如以下样例: { "conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则
例如以下样例: { "conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则
domain_name为用户所属的帐号名。 cn-north-1为项目名,代表服务的部署区域。
domain_name为用户所属的帐号名。 cn-north-1为项目名,代表服务的部署区域。
LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。
具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
如果您购买了套餐包,可优先选择您对应规格的套餐包,在“配置费用”页签会显示您的套餐余量,以及超出的部分如何计费,请您关注,避免造成不必要的资源浪费。 节点配置 数据标注参数配置 labeling_input:选择预先创建的数据集即可,版本可以不用选择。
LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。
下文中介绍如何在ECS中构建一个训练镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。
ModelArts Standard中如何实现断点续训练 在ModelArts Standard训练中实现断点续训练或增量训练,建议使用“训练输出”功能。
工作流相关的配置执行操作可参考如何使用Workflow。 基于release()方法,提供了release_and_run()方法,支持用户在开发态发布并运行工作流,节省了前往console配置执行的操作。
例如以下样例: { "conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则
例如以下样例: { "conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则
例如以下样例: { "conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则
ModelArts Standard中如何实现增量训练 增量训练是通过Checkpoint机制实现。 Checkpoint的机制是:在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。
此处以Python接口为例,介绍如何使用MindSpore Lite Python API构建并推理Stable Diffusion模型,更多信息请参考MindSpore Lite应用开发。
TF-1.13.1-python3.6 TF-2.1.0-python3.6 PyTorch-1.4.0-python3.6 下文将介绍如何在训练中使用评估代码。对训练代码做一定的适配和修正,分为三个方面:添加输出目录、复制数据集到本地、映射数据集路径到OBS。