检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常使用。 调用查看授权列表接口查看用户的授权信息。 在管理用户授权时,可以调用删除授权接口删除指定用户的授权或者删除全量用户的授权。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上
边缘服务 云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端设备通常计算能力不足,无法与云端相比。在此情况下,通过在靠近终端设备的地方建立边缘节点,将云端计算能力延伸到靠近终端设备的边缘节点,从而解决上述问题。
集成在线服务API至生产环境中应用 针对已完成调测的API,可以将在线服务API集成至生产环境中应用。 前提条件 确保在线服务一直处于“运行中”状态,否则会导致生产环境应用不可用。 集成方式 ModelArts在线服务提供的API是一个标准的Restful API,可使用HTTP
908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。
8 核 32GB、计算节点个数为1个的公共资源池和磁盘规格为5GB的运行盘(总计单价:3.407 元/小时),并于当天13:00:00删除Notebook实例。按照计算资源费用和存储费用结算,那么运行这个Notebook实例的费用计算如下: 资源费用 = 计算资源费用 + 存储费用
Content-Type →application/json 其中,加粗的斜体字段需要根据实际值填写: ma_endpoint为ModelArts的终端节点。 project_id为用户的项目ID。 dataset_id为待启动智能标注任务的数据集ID。 X-auth-Token的值为获取到的Token值。
SD3.5基于Lite Server适配PyTorch NPU的推理指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 本文基于diffusers和comfyui两个框架进行适配。 方案概览
同计费类型/计费周期的资源,解决如下用户的使用场景: 用户在包长周期的资源池中无法扩容短周期的节点。 用户无法在包周期的资源池中扩容按需的节点(包括AutoScaler场景)。 支持SFS产品权限划分 支持SFS权限划分特性,可以实现训练场景中,挂载的SFS的文件夹能够权限控制,
912软件包中的AscendCloud-AIGC-6.3.912-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.912 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信
大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。
大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。
912软件包中的AscendCloud-AIGC-6.3.912-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.912 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信
907软件包中的AscendCloud-AIGC-6.3.907-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
核 32GB、计算节点个数为1个(单价:3.40 元/小时)。按照计算资源费用、存储费用结算,那么运行这个Workflow实例的费用计算过程如下: 计算资源费用 = 规格单价 * 计算节点个数 * 训练作业运行时长 + 规格单价 * 计算节点个数 * 服务运行时长 计算资源费用 =
大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。
大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。
NPU训练指导 Open-Clip广泛应用于AIGC和多模态视频编码器的训练。 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾NPU计算资源开展Open-clip训练的详细过程。完成本方案的部署,需要先联系您所在企业的华为方技术支持购买DevServer资源。