检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/v1/{project_id}/dev-servers 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 admin_pass 否 String 用于
name}/nodepools 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 pool_name 是 String 资源池名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型
String Notebook实例ID,可通过调用查询Notebook实例列表接口获取。 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 请求参数 无 响应参数 状态码:200 表2 响应Body参数 参数 参数类型 描述 action_progress
String 模型名称。 model_version String 模型版本。 tenant String 租户。 project String 项目。 owner String 用户。 create_at Long 模型创建时间,距'1970.1.1 0:0:0 UTC'的毫秒数。 source_location
服务名称。 description String 服务描述。 tenant String 服务归属租户。 project String 服务归属项目。 owner String 服务归属用户。 publish_at Number 服务最新的发布时间,距'1970.1.1 0:0:0 UTC'的毫秒数。
需要时使用用户的委托获取临时认证凭据用于操作用户资源,具体配置见配置访问授权章节。 工作空间 工作空间是ModelArts面向已经开通企业项目的企业客户提供的一个高阶功能,用于进一步将用户的资源划分在多个逻辑隔离的空间中,并支持以空间维度进行访问的权限限定。 在开通工作空间后,系
中引入的重复图片、相似图片等问题;在一批输入旧模型的推理数据中,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。
注意:推理应用开发时,需要使用模型的Resize功能,改变输入的shape。而且Resize操作需要在数据从host端复制到device端之前执行,下面是一个简单的示例,展示如何在推理应用时使用动态Shape。 import mindspore_lite as mslite import numpy
String Notebook实例ID,可通过调用查询Notebook实例列表接口获取。 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 duration 否 Long 启动后运行时长(单位:毫秒)。
String Notebook实例ID,可通过调用查询Notebook实例列表接口获取。 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 请求参数 无 响应参数 状态码:200 表2 响应Body参数 参数 参数类型 描述 action_progress
/v2/{project_id}/pools/{pool_name} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 pool_name 是 String 资源池名称。 请求参数 表2 请求Header参数 参数 是否必选 参数类型
本文档提供的调测代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,只需要修改个别的参数即可。 DataParallel进行单机多卡训练的优缺点 代码简单:仅需修改一行代码。 通信瓶颈 :负责reducer的GPU更新模型参数后分发到不同的GPU,因此有较大的通信开销。 GPU负载不均衡:负
SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS
SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS
SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS
SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS
es/{service_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 service_id 是 String 服务ID,在创建服务时即可在返回体中获取,也可通过查询服务列表接口获取
SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS
服务部署节点运行成功后,单击“实例详情”可跳转至对应的在线服务详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习图像分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,“在服务部署”节点,单击“实例详情”按钮,进入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。
服务部署节点运行成功后,单击“实例详情”可跳转至对应的在线服务详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习预测分析项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,您可输入代码进行测试。在“自动学习”页面,在服务部署节点,单击“实例详情”