检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变
语言模型推理性能测试 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变
不添加新节点的情况下完全覆盖ConditionStep的能力,使用上更灵活。 构建条件节点控制分支执行主要用于执行流程的条件分支选择,可以简单的进行数值比较来控制执行流程,也可以根据节点输出的metric相关信息决定后续的执行流程。 配置节点参数控制分支执行与ConditionS
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变
语言模型推理性能测试 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变
AlpacaStyleInstructionHandler:使用LLama-Factory模板Alpaca数据集 SharegptStyleInstructionHandler:使用LLama-Factory模板Sharegpt数据集 其他参数设置,详解如下: 参数 示例值 参数说明 stage
AlpacaStyleInstructionHandler:使用LLama-Factory模板Alpaca数据集 SharegptStyleInstructionHandler:使用LLama-Factory模板Sharegpt数据集 其他参数设置,详解如下: 参数 示例值 参数说明 stage
alse时允许执行的节点列表,存储的是节点名称;此时if_then_steps中的step跳过不执行。 使用案例 根据需求参考简单示例或进阶示例。 简单示例 通过参数配置实现 import modelarts.workflow as wf left_value = wf.Pla
├──cpu_npu # 检测资源消耗 ├── config │ ├── config.json # 服务的配置模板,已配置了ma-standard,tgi示例 │ ├── mmlu_subject_mapping.json # mmlu数据集学科信息
n目录中,代码目录结构如下: benchmark_eval ├── config │ ├── config.json # 服务的配置模板,已配置了ma-standard,tgi示例 │ ├── mmlu_subject_mapping.json # mmlu数据集学科信息
停止,则推荐参照创建诊断任务创建cpu规格的notebook进行性能分析,节省NPU计算资源。完成分析后,可以查看生成的html文件来进行快速的调优,html文件详情请参考查看诊断报告。 下面以开发环境Notebook为例介绍一个典型的性能调优案例。 64卡训练任务,模型为GPT
AlpacaStyleInstructionHandler:使用LLama-Factory模板Alpaca数据集 SharegptStyleInstructionHandler:使用LLama-Factory模板Sharegpt数据集 micro-batch-size 1 表示流水线并行中一个micro
AlpacaStyleInstructionHandler:使用LLama-Factory模板Alpaca数据集 SharegptStyleInstructionHandler:使用LLama-Factory模板Sharegpt数据集 micro-batch-size 1 表示流水线并行中一个micro
├──cpu_npu # 检测资源消耗 ├── config │ ├── config.json # 服务的配置模板,已配置了ma-standard,tgi示例 │ ├── mmlu_subject_mapping.json # mmlu数据集学科信息
AlpacaStyleInstructionHandler:使用LLama-Factory模板Alpaca数据集 SharegptStyleInstructionHandler:使用LLama-Factory模板Sharegpt数据集 MBS 4 表示流水线并行中一个micro batch所