检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
TEXT:文本 AUDIO:音频 TABLE:表格 VIDEO:视频 PLAIN:自由格式 dataset_type 否 Integer 根据数据集类型查询数据集列表,与data_type参数二选一。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组
Manifest文件可以由用户、第三方工具或ModelArts数据标注生成,其文件名没有特殊要求,可以为任意合法文件名。为了ModelArts系统内部使用方便,ModelArts数据标注功能生成的文件名由如下字符串组成:“DatasetName-VersionName.manifes
在“鉴权管理”页面,单击“创建API Key”,填写描述信息后,单击“确认”会返回“您的密钥”,请复制保存密钥,单击“关闭”后将无法再次查看密钥。 最多支持创建5个密钥,密钥只会在新建后显示一次,请妥善保存。 当密钥丢失将无法找回,请新建API Key获取新的访问密钥。 步骤2:调用MaaS模型服务进行预测
准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.911)
0829092203-4ccf328 镜像发布到SWR,从SWR拉取 固件驱动:23.0.6 CANN:cann_8.0.rc3 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1.0、pytorch_2.2.0 MindSpore:MindSpore 2.3.0
0.0为8镜像构建脚本中设置的镜像地址。 “架构”:选择X86_64 “类型”:选择CPU 图7 注册镜像 注册完成后,可以在镜像管理页面查看到注册成功的镜像。 Step3 在Notebook中变更镜像并调试 使用制作完成的自定义镜像进行推理服务调试,调试成功后再导入到ModelArts的模型中并部署为在线服务。
为异步推理模型,设置服务启动参数,配置完成后直接单击继续运行即可。 其中服务启动参数与您选择的异步推理模型相关,选择了需要的模型及版本后,系统会自动匹配响应的服务启动参数。 父主题: 创建Workflow节点
静态shape,并且打开--optimize参数指定“ascend_oriented”能够获得更好的常量折叠优化效果。inputShape查看方法请见转换关键参数准备。 Ascend Optimization Engine converter_lite --modelFile=resnet50
SkuInfo 参数 参数类型 描述 code String 计费码。 period String 计费时期。 queries_limit Long 查询次数。 price Float 价格。 请求示例 更新工作流信息 PUT https://{endpoint}/v2/{project_i
--hf-num-gpus:需要使用的卡数。 --batch-size:推理每次处理的输入数目。 -w:存放输出结果的目录。 Step2 查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{mod
docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
模型的最大输出长度 --hf-num-gpus, 需要使用的卡数 --batch-size, 推理每次处理的输入数目 -w 存放输出结果的目录 Step2 查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{mod
String MRS集群ID。可登录MRS控制台查看。 cluster_mode 否 String MRS集群运行模式。可选值如下: 0:普通集群 1:安全集群 cluster_name 否 String MRS集群名称。可登录MRS控制台查看。 database_name 否 String
--hf-num-gpus:需要使用的卡数。 --batch-size:推理每次处理的输入数目。 -w:存放输出结果的目录。 Step2 查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{mod
--hf-num-gpus:需要使用的卡数。 --batch-size:推理每次处理的输入数目。 -w:存放输出结果的目录。 步骤二:查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{mod
--hf-num-gpus:需要使用的卡数。 --batch-size:推理每次处理的输入数目。 -w:存放输出结果的目录。 Step2 查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{mod
docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
--hf-num-gpus:需要使用的卡数。 --batch-size:推理每次处理的输入数目。 -w:存放输出结果的目录。 Step2 查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{mod
--hf-num-gpus:需要使用的卡数。 --batch-size:推理每次处理的输入数目。 -w:存放输出结果的目录。 Step2 查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{mod
#检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward