检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
声音分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。 登录Mo
create --quiet --yes -n my-env python=3.6.5 创建完成后,执行conda info --envs命令查看现有的虚拟环境列表,可以看到my-env虚拟环境: sh-4.4$conda info --envs # conda environments:
物体检测:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。 登录Mo
文本分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。 登录Mo
def get_rank_table(): rank_table_file_path = os.getenv("RANK_TABLE_FILE") env_ip = os.getenv("ip") # Lite Cluster中的RANK_TABLE_FILE实际名称为
图像分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。 登录Mo
预测分析:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。 登录Mo
拼接而成;若以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:to
模型来源选择“从对象存储服务(OBS)中选择”,元模型选择转换后模型的存储路径,AI引擎选择“Custom”,引擎包选择准备镜像中上传的推理镜像。 系统运行架构选择“ARM”。 图3 设置AI应用 单击“立即创建”开始AI应用创建,待应用状态显示“正常”即完成AI应用创建。 首次创建AI应
0910150953-6faa0ed 镜像发布到SWR,从SWR拉取 固件驱动:23.0.6 CANN:cann_8.0.rc3 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1.0、pytorch_2.2.0 MindSpore:MindSpore 2.3.0
denied。请依次排查: 请确保读取的OBS桶和Notebook处于同一站点区域,例如:都在华北-北京四站点。不支持跨站点访问OBS桶。具体请参见查看OBS桶与ModelArts是否在同一个区域。 请确认操作Notebook的账号有权限读取OBS桶中的数据。如没有权限,请参见在Noteb
ne-parallel-size,默认为1。 注意:权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
拼接而成;若以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:to
#检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
任务不同调整参数target-pipeline-parallel-size,默认为1。 权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
任务不同调整参数target-pipeline-parallel-size,默认为1。 权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
任务不同调整参数target-pipeline-parallel-size,默认为1。 权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
任务不同调整参数target-pipeline-parallel-size,默认为1。 权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
再启动训练作业。当预处理后的数据不满足训练要求时,也会导致训练作业运行失败。 对于数据集中列的过滤策略如下所示: 如果某一列空缺的比例大于系统设定的阈值(0.9),此列数据在训练时将被剔除。 如果某一列只有一种取值(即每一行的数据都是一样的),此列数据在训练时将被剔除。 对于非纯
在“数据处理”页面,单击“创建”进入“创建数据处理”页面。 在创建数据处理页面,填写相关算法参数。 填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。