检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
深度学习是通向人工智能的途径之一。具体来说,它是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。我们坚信机器学习可以构建出在复杂实际环境下运行的AI系统,并且是唯一切实可行的方法。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千
处理领域,深度学习技术可以自动理解语言的结构和含义。这是因为深度学习模型可以从文本中提取特征,例如词汇、语法结构和语义等。然后,这些特征可以被用于理解文本的含义和结构。在机器人控制领域,深度学习技术可以帮助机器人识别和理解环境,并进行自主决策。这是因为深度学习模型可以从图像和语音
些偏导数等于零,解方程得到b和w的估计值。但是这个方法只适合少数结构比较简单的模型(比如线性回归模型),不能求解深度学习这类复杂模型的参数。 所以下面介绍的是深度学习中常用的优化算法:`梯度下降法`。其中有三个不同的变体:随机梯度下降法、全数据梯度下降法、和批量随机梯度下降法。
之前学了一个深度学习应用开发,学了一段时间,后来就没学了。 确实是"靡不有初,鲜克有终",现在不愿意再继续之前的学。我又找了一本书从头开始,这本书的名字是深度学习入门与TensorFlow实践>。 `数(scalar)`是一个数字。 简直是废话。 不过这才刚开始嘛。 多个数字有序
太快步子大了容易扯着蛋,也没有必要。这里的用学习率/步长来描述这个节奏,如果梯度是2.5,学习率是0.01,那下一个尝试的点是距离前一个点2.5*0.01=0.0025的位置。(梯度是固定的,还是每走一步都会变的呢?)个人认为好的学习率,不应该是一个固定值,而应该是先大后小。也就
7116229.png) 观察箭头的方向,代表了处理的流程。通过线性回归模型和生物神经元的类比,可以将线性模型称作一个只包含一个神经元的神经网络。 同样的,logistic模型也可以用来进行类比,下图代表的就是预估y等于1的概率的处理过程: ![image.png](https://bbs-img
23.9 22. 11.9] ,shape= (506,) ```python #数据就已经读进来了 #None代表未知,因为我们可以一次带入一行样本,也可以一次带入多行样本 x=tf.placeholder(tf.float32,[None,12],name="X") y=tf.placeholder(tf
征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是 y=wx+b里的w和b,也叫权重和偏差?在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度的减少损失的模型。这一过程称为经验风
com/data/forums/attachment/forum/202108/04/105156dxvyfdoaeoob1d2w.png) ```python #插播学习一下reshape,总体顺序还是不变,但切分点变了 import numpy as np int_array=np.array([i for
说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```
因此,在此基础上,隐藏层到输出层的logistic模型就可以把其分开了:从这个例子可以看到,神经网络可以先通过隐藏层学习数据的不同特征,再根据隐藏层得到的特征做出更好的预测。也就是说通过增加隐藏层,神经网络可以找到输入层和因变量之间更复杂的关系;而不通过隐藏层,这种关系无法表达。同时可以通过增加隐藏层的数量和每
深度学习的另一个最大的成就是其在强化学习 (reinforcement learning) 领域的扩展。在强化学习中,一个自主的智能体必须在没有人类操作者指导的情况下,通过试错来学习执行任务。DeepMind 表明,基于深度学习的强化学习系统能够学会玩Atari 视频游戏,并在多种任务中可与人类匹敌
业也在快速布局。2、所需数据量机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。3、执行时间执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该
学习步长$\alpha$是一个很重要的参数。 如果太小,算法会收敛的很慢。 如果太大,容易造成算法不收敛,甚至发散。 自变量的标准化,和因变量的中心化,是建立深度学习模型常用的数据预处理方法。 他们的好处,是不仅可以让梯度下降法的数值表现的更加稳定,还有助于我们找到合适的初始值和步长。
也就是说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型如何得到输出的流程
训练模型跑出来了后,要使用,但是我们没有数据了,因为数据都拿去训练了。 所以课程中,随机挑了一条训练数据来应用到模型里来使用。 这样是不好的,因为就像学习训练时将考试题都让你做过一遍,再让你考试就不公平了,类似于作弊了。 应该是考你运用学到的知识,来做没做过的题。 那比较好的做法呢,是有一些数据,把这些数据分一分,
首先要明白什么是深度学习?深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络
float32) x_test=tf.cast(scale(x_test),dtype=tf.float32) #None代表未知,因为我们可以一次带入一行样本,也可以一次带入多行样本 #x=tf.placeholder(tf.float32,[None,12],name="X") #y=tf
深度学习界在某种程度上已经与更广泛的计算机科学界隔离开来,并且在很大程度上发展了自己关于如何进行微分的文化态度。更一般地,自动微分(automatic differentiation)领域关心如何以算法方式计算导数。这里描述的反向传播算法只是自动微分的一种方法。它是一种称为反向模式累加(reverse
引入这两个算法。神经网络的目的是建立输入层与输出层之间的关系,进而利用建立的关系得到预测值。通过增加隐藏层,神经网络可以找到输入层与输出层之间较复杂的关系。深度学习是拥有多个隐藏层的神经网络,在神经网络中,我们通过正向传播算法得到预测值,并通过反向传播算法得到参数梯度,然后利用梯