检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
深度学习是通向人工智能的途径之一。具体来说,它是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。我们坚信机器学习可以构建出在复杂实际环境下运行的AI系统,并且是唯一切实可行的方法。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千
如果太小,算法会收敛的很慢。 如果太大,容易造成算法不收敛,甚至发散。 自变量的标准化,和因变量的中心化,是建立深度学习模型常用的数据预处理方法。 他们的好处,是不仅可以让梯度下降法的数值表现的更加稳定,还有助于我们找到合适的初始值和步长。 ![image.png](https://bbs-img
Leanote简介 Leanote 是一款多平台的云笔记本应用程序,它支持 Windows、Mac、Linux 和 Android 等各种操作系统。Leanote 提供了一套完整的笔记管理系统,用户可以创建、编辑和组织笔记,还可以添加标签、分类和文件附件等。 2.2 Leanote特点
接下来就是讲线性模型了。线性模型相对比较简单,但是他是学习比较复杂的深度学习模型的一个基础,而且线性模型本身也具有广泛的用途。 这里讲了线性模型中的线性回归模型和logistic模型。线性回归模型用于处理`回归问题`。logistic模型用于处理`分类问题`。 线性回归模型可以写作如下的形式: ![image.png](https://bbs-img
最近接了一个图像识别的项目,公司配的笔记本电脑只是GT840M 2G显存,只能跑跑LeNet、MobileNet v2、NASNet Mobile这些小模型。效果虽然过得去,但是每个EPOCH几十分钟,真的让人心急死,都懒得去调参数。干脆用华为云深度学习服务,测试一下。华为云DLS的版本:keras
点值都通过激活函数进行变换,使得输出层是输入层的一个非线性函数。当神经网络有很多隐藏层,且每个隐藏层有很多节点是加入了激活函数的神经网络,可以得到非常复杂的非线性函数,从而提高神经网络解决实际问题的能力。那么什么样的激活函数会是一个表现的比较好的激活函数呢?激活函数是连续函数,且
238646.png) 前一节已经讲过线性回归模型的数学公式的表达,这里我们先假设给定截距项b和自变量权重w,至于误差这里不管,那么我们就可以写出预测函数了。 ```python def linear_mode(input,weight,b): prediction=np.sum(input*weight)+b
al., 2015) 都能支持重要的研究项目或商业产品。 深度学习也为其他科学做出了贡献。用于对象识别的现代卷积网络为神经科学家们提供了可以研究的视觉处理模型 (DiCarlo, 2013)。深度学习也为处理海量数据以及在科学领域作出有效的预测提供了非常有用的工具。它已
深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播
数据会包含多个自变量,多个权重,很多个观测点。 用 $L(w)=L(w_1,w_2,...,w_p)$ 表示包含p个权重或参数的损失函数,它的梯度可以表示为: ![image.png](https://bbs-img.huaweicloud.com/data/forums/attachm
正向传播(Forward Propagation FP)算法指输入值通过神经网络得到输出值的方法。正向传播算法的计算图如下:$sigma$表示sigmoid函数,也就是激活函数。包含损失函数的计算图如下:得到$l_2$,通过$l$计算损失函数L,其中$l$表示求解损失函数的运算。
线性回归模型相当于下面的简单神经网络模型,它没有隐藏层、输出层只有1个节点,激活函数是线性函数。使用 tf.keras.models.Sequential()构建模型使用 model.compile() 设置优化方法、损失函数、评价指标 (损失函数的值即 训练误差;评价指标的值即
下面用之前的广告数据,来建立线性回归模型,看看tensorflow2的一般建模过程。import numpy as np #1. 数据预处理:装载广告数据 def loadDataSet(): x=[];y=[] f=open('./Ad.csv')
因变量的常见数据类型有三种:定量数据、二分类定性数据和多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1
遇见你,遇见未来 华为云 | +智能,见未来 项目实习生 深度学习模型优化 深度学习模型优化 领域方向:人工智能 工作地点: 深圳 深度学习模型优化 人工智能 深圳 项目简介 为AI类应用深度学习模型研发优化技术,包括神经网络结构设计,NAS搜索算法,训练算法优化,AI模型编译优化等。
使用服务器跑深度学习算法 前言 深度学习是人工智能领域中备受瞩目的技术之一,它通过多层神经网络模拟人脑的学习过程,帮助计算机在语音识别、图像分类和自然语言处理等领域取得突破性进展。相比传统机器学习,深度学习的一个重要特点是可以自动提取特征,而不需要人工定义特征,这大幅提升了效率和效果。
主要通过深度学习框架MXNet来介绍如何实战深度学习算法,该框架融合了命令式编程和符号式编程,在灵活和高效之间取得了非常好的平衡。正如前文所述,各深度学习框架之间有很多相似性,当你深入了解其中一种深度学习框架之后基本上就能举一反三,因此如果你现在还在犹豫学习哪个深度学习框架,那么
欠拟合、过拟合的总结如下:接下来是TensorFlow框架部分,之前有个帖子 基于TensorFlow 2建立深度学习的模型 - 快速入门 cid:link_0然后会使用它来建立线性回归模型和神经网络分类模型敬请期待
的梯度消失问题。tanh函数也有梯度消失问题。ReLU(Rectified Linear Unit)函数出现和流行的时间都比较晚,但却是深度学习常用的激活函数。它非常简单: ReLU(x)=max(x,0) 是一个折线函数,所有负的输入值都变换成0,所有非负的输入值,函数值都等于
个完整系统玩玩 摄像头/麦克风输入 -> 笔记本/树莓派 运行 物体检测/人脸识别/语音识别 -> 结果显示*注:这里可以随意选一个方向,笔者认为图像相对简单些,语音门槛高一些,因此果断先选择图像做物体检测,关于硬件,家里有带摄像头笔记本就直接用,没有就买个树莓派+摄像头,500RMB搞定*二、对以上系统进行加速