已找到以下 10000 条记录
  • 华为云深度学习

    群和0.8的线性加速比,原先一个月的模型训练时间,现在1小时搞定机会难得,小伙伴们还不抓紧来体验,数量有限,先到先得哦!!点击访问华为云深度学习官网

    作者: 斑馬斑馬
    331
    0
  • 深度学习框架有哪些?

    深度学习框架有哪些?各有什么优势?

    作者: 可爱又积极
    759
    6
  • 深度学习之机器学习的算法效果

            当我们使用机器学习算法时,我们不会提前固定参数,然后从数据集中采样。我们会在训练集上采样,然后挑选参数去降低训练集误差,然后再在测试集上采样。在这个过程中,测试误差期望会大于或等于训练误差期望。以下是决定机器学习算法效果是否好的因素:        1. 降低训练误差 

    作者: 小强鼓掌
    726
    3
  • 深度学习之对抗训练

    具有许多输入,那么它的值可以非常迅速地改变。如果我们用 ϵ 改变每个输入,那么权重为w 的线性函数可以改变 ϵ ∥w∥1 之多,如果 w 是高维的这会是一个非常大的数。对抗训练通过鼓励网络在训练数据附近的局部区域恒定来限制这一高度敏感的局部线性行为。这可以被看作是一种明确地向监督神经网络引入局部恒定先验的方法。

    作者: 小强鼓掌
    842
    1
  • 深度学习之聚类问题

    关于聚类的一个问题是聚类问题本身是病态的。这是说没有单一的标准去度量聚类的数据对应真实世界有多好。我们可以度量聚类的性质,例如每个聚类的元素到该类中心点的平均欧几里得距离。这使我们可以判断能够多好地从聚类分配中重建训练数据。然而我们不知道聚类的性质多好地对应于真实世界的性质。此外,可

    作者: 小强鼓掌
    536
    1
  • 深度学习之约束优化

    1。约束优化的一个简单方法是将约束考虑在内后简单地对梯度下降进行修改。如果我们使用一个小的恒定步长 ϵ,我们可以先取梯度下降的单步结果,然后将结果投影回 S。如果我们使用线搜索,我们只能在步长为 ϵ 范围内搜索可行的新 x 点,或者我们可以将线上的每个点投影到约束区域。如果可能的话,在梯度下降或线搜索前将梯度投影到可行域的切空间会更高效

    作者: 小强鼓掌
    834
    5
  • Ubuntu深度学习环境配置

    Ubuntu深度学习环境配置安装组合:Anaconda+PyTorch(CPU版)或PyTorch(GPU版)开源贡献:陈信达,华北电力大学3.1 Anacond安装Anaconda和Python版本是对应的,所以需要选择安装对应Python2.7版本的还是Python3.7版本

    作者: @Wu
    665
    0
  • 深度学习之监督学习算法

    源自这样一个视角,教员或者老师提供目标 y 给机器学习系统,指导其应该做什么。在无监督学习中,没有教员或者老师,算法必须学会在没有指导的情况下让数据有意义。尽管无监督学习和监督学习并非完全没有交集的正式概念,它们确实有助于粗略分类我们研究机器学习算法时遇到的问题。传统地,人们将回归,分类

    作者: 小强鼓掌
    865
    2
  • 深度学习之对抗训练

    进行评估已经达到了人类表现。因此,我们自然要怀疑这些模型在这些任务上是否获得了真正的人类层次的理解。为了探索网络对底层任务的理解层次,我们可以探索这个模型错误分类的例子。 Szegedy et al. (2014b) 发现,在精度达到人类水平的神经网络上通过优化过程故意构造数据点

    作者: 小强鼓掌
    624
    2
  • 深度学习之批量算法

    促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的 m 个样本都是彼此相同的拷贝。基于采样的梯度估计可以使用单个样本计算出正确的梯度,而比原来的做法少花了 m 倍时间。实践中,我们不太可能真的遇到这种最坏情况,但我们可能会发现大量样本都对梯度

    作者: 小强鼓掌
    317
    1
  • 深度学习笔记》的笔记(五):解决退化问题

    退化问题不解决,深度学习就无法Go Deeper。于是残差网络ResNet提出来了。要理解残差网络,就要理解残差块(Residual Block)这个结构,因为残差块是残差网络的基本组成部分。之前的各种卷积网络结构(LeNet5、AlexNet、VGG),通常结构就是卷积池化再卷

    作者: 黄生
    40
    3
  • 深度学习之流形假设

    和其他样本相互连接,每个样本被其他高度相似的样本包围,可以通过变换来遍历该流形。支持流形假设的第二个论点是,我们至少能够非正式地想象这些邻域和变换。在图像中,我们当然会认为有很多可能的变换允许我们描绘出图片空间的流形:我们可以逐渐变暗或变亮光泽,逐步移动或旋转图中对象,逐渐改变对

    作者: 小强鼓掌
    1142
    1
  • 深度学习之快速 Dropout

    导出了近似这种边缘分布的解析解。他们的近似被称为快速 Dropout(fast dropout),减小梯度计算中的随机性而获得更快的收敛速度。这种方法也可以在测试时应用,能够比权重比例推断规则更合理地(但计算也更昂贵)近似所有子网络的平均。快速 Dropout在小神经网络上的性能几乎与标准的D

    作者: 小强鼓掌
    1197
    4
  • 深度学习之快速 Dropout

    导出了近似这种边缘分布的解析解。他们的近似被称为快速 Dropout(fast dropout),减小梯度计算中的随机性而获得更快的收敛速度。这种方法也可以在测试时应用,能够比权重比例推断规则更合理地(但计算也更昂贵)近似所有子网络的平均。快速 Dropout在小神经网络上的性能几乎与标准的D

    作者: 小强鼓掌
    541
    1
  • 深度学习之参数共享

    sharing)。和正则化参数使其接近(通过范数惩罚)相比,参数共享的一个显著优点是,只有参数(唯一一个集合)的子集需要被存储在内存中。对于某些特定模型,如卷积神经网络,这可能可以显著减少模型所占用的内存。

    作者: 小强鼓掌
    825
    2
  • 深度学习之参数共享

    sharing)。和正则化参数使其接近(通过范数惩罚)相比,参数共享的一个显著优点是,只有参数(唯一一个集合)的子集需要被存储在内存中。对于某些特定模型,如卷积神经网络,这可能可以显著减少模型所占用的内存。

    作者: 小强鼓掌
    933
    1
  • 深度学习之切面距离

    M1 和 M2 最近点对的优化问题),一种局部合理的廉价替代是使用 xi 点处切平面近似 Mi,并测量两条切平面或一个切平面和点之间的距离。这可以通过求解一个低维线性系统(就流形的维数而言)来实现。当然,这种算法需要制定一个切向量。

    作者: 小强鼓掌
    424
    1
  • 分享深度学习未来发展的学习范式-——简化学习

        在深度学习领域, 特别是在NLP(深度学习领域研究最热潮激动人心的领域)中,模型的规模正在不断增长。最新的GPT-3模型有1750亿个参数。把它和BERT比较就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?    按理来说,不会,GPT-3是非常有说

    作者: 初学者7000
    1133
    1
  • 图像视频压缩:深度学习,有一套

    为量化器;GG 为解码和生成器;DD 为对抗器。 基于深度学习的视频压缩编码 基于深度学习的视频编码分为两种: • 采用深度学习替代传统视频编码中部分模块 • 端到端采用深度学习编码压缩 部分方案 采样深度神经网络可以替代传统视频编码中的模块包括:帧内/帧间预测、变换、上下采样、环路滤波、熵编码等6。

    作者: 技术火炬手
    发表时间: 2021-03-23 06:28:07
    7893
    0
  • 深度学习之代价函数

            深度神经网络设计中的一个重要方面是代价函数的选择。幸运的是,神经网络的代价函数或多或少是和其他的参数模型例如线性模型的代价函数相同的。       在大多数情况下,我们的参数模型定义了一个分布 p(y | x; θ) 并且我们简单地使用最大似然原理。这意味着我们使

    作者: 小强鼓掌
    741
    2