检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的)。但在其它国家也可能体现出附近学校的水平有多好。在图上每一个画的小圆圈都可以是ReLU的一部分,也就是指修正线性单元,或者其它稍微非线性的函数。基于房屋面积和卧室数量,可以估算家庭人口,基于邮编,可以估测步行化程度或者学校的质量。最后你可能会这样想,这些决定人们乐意花费多少钱
梯度下降和基本上所有的可以有效训练神经网络的学习算法,都是基于局部较也许能计算目标函数的一些性质,如近似的有偏梯度或正确方向估计的方差。在这些情况下,难以确定局部下降能否定义通向有效解的足够短的路径,但我们并不能真的遵循局部下降的路径。目标函数可能有诸如病态条件或不连续梯度的问题
图中的每一个节点来表示一个变量。变量可以是标量、向量、矩阵、张量、或者甚至是另一类型的变量。为了形式化我们的图形,我们还需引入操作(operation)这一概念。操作是指一个或多个变量的简单函数。我们的图形语言伴随着一组被允许的操作。我们可以通过将多个操作复合在一起来描述更为复杂
由于它们被限制为线性而无法抵抗对抗样本。神经网络能够将函数从接近线性转化为局部近似恒定,从而可以灵活地捕获到训练数据中的线性趋势同时学习抵抗局部扰动。对抗样本也提供了一种实现半监督学习的方法。在与数据集中的标签不相关联的点 x 处,模型本身为其分配一些标签 yˆ。模型的标记 yˆ
具有许多输入,那么它的值可以非常迅速地改变。如果我们用 ϵ 改变每个输入,那么权重为w 的线性函数可以改变 ϵ ∥w∥1 之多,如果 w 是高维的这会是一个非常大的数。对抗训练通过鼓励网络在训练数据附近的局部区域恒定来限制这一高度敏感的局部线性行为。这可以被看作是一种明确地向监督
负对数似然组成的损失都是定义在训练集上的经验分布和定义在模型上的概率分布之间的交叉熵。例如,均方误差是经验分布和高斯模型之间的交叉熵。我们可以将最大似然看作是使模型分布尽可能和经验分布 pˆdata 相匹配的尝试。理想情况下,我们希望匹配真实的数据生成分布 pdata,但我们没法直接知道这个分布。虽然最优
小但非零时,由于摩擦导致的恒力会使得粒子在达到局部极小点之前就停下来。粘性阻力避免了这两个问题——它足够弱,可以使梯度引起的运动直到达到最小,但又足够强,使得坡度不够时可以阻止运动。这解释了动量更新的基本形式,但具体什么是力呢?力正比于代价函数的负梯度 −∇θJ(θ)。该力推动粒
ik}。这提供了一种方法来学习对输入 x 空间中多个方向响应的分段线性函数。maxout 单元可以学习具有多达 k 段的分段线性的凸函数。maxout 单元因此可以视为学习激活函数本身而不仅仅是单元之间的关系。使用足够大的 k,maxout 单元可以以任意的精确度来近似任何凸函数。特别地,具有两块的
须选择让神经网络能够学习对抗的修改类型。在理想情况下,我们也应该使用可以快速近似推断的模型族。我们可以认为由向量 µ 参数化的任何形式的修改,是对 µ 所有可能的值训练 p(y | x, µ) 的集成。注意,这里不要求 µ 具有有限数量的值。例如, µ 可以是实值。Srivastava
循环次数内没有进一步改善时,算法就会终止。此过程在算法中有更正式的说明。这种策略被称为提前终止(early stopping)。这可能是深度学习中最常用的正则化形式。它的流行主要是因为有效性和简单性。
项技术主要用于循环神经网络 (Jim et al., 1996; Graves, 2011)。这可以被解释为关于权重的贝叶斯推断的随机实现。贝叶斯学习过程将权重视为不确定的,并且可以通过概率分布表示这种不确定性。向权重添加噪声是反映这种不确定性的一种实用的随机方法。
在相对正式的 “任务”定义中,学习过程本身并不是任务。学习是我们所谓的获取完成任务的能力。例如,我们的目标是使机器人能够行走,那么行走便是任务。我们可以编程让机器人学会如何行走,或者可以编写特定的指令,人工指导机器人如何行走。 通常机器学习任务定义为机器学习系统该如何处理样本
深度学习中常用的backbone有resnet系列(resnet的各种变体)、NAS网络系列(RegNet)、Mobilenet系列、Darknet系列、HRNet系列、Transformer系列和ConvNeXt。Backbone结构分类主要分成三类:CNNs结构, Trans
非常相似。该模型进而会赋予相对应的训练标签 y 较大的权重。总的来说,预测将会组合很多这种通过训练样本相似性加权的训练标签。支持向量机不是唯一可以使用核策略来增强的算法。许多其他的线性模型可以通过这种方式来增强。使用核策略的算法类别被称为核机器 (kernel machine) 或核方法 (kernel method)(Williams
teacher-student模型是迁移学习的一种,迁移学习也就是将一个模型的性能迁移到另一个模型上,对于教师网络往往是一个更加复杂的网络,具有非常好的性能和泛化能力,可以用这个网络来作为一个soft target来指导另外一个更加简单的学生网络来学习,使得更加简单、参数运算量更少的学
是未知的定值,而点估计θˆ 是考虑数据集上函数(可以看作是随机的)的随机变量。 贝叶斯统计的视角完全不同。贝叶斯用概率反映知识状态的确定性程度。数据集能够直接观测到,因此不是随机的。另一方面,真实参数 θ 是未知或不确定的,因此可以表示成随机变量。 在观察到数据前,我们将
型的深度学习模型有卷积神经网络( convolutional neural network)、DBN和堆栈自编码网络(stacked auto-encoder network)模型等,下面对这些模型进行描述。 卷积神经网络模型 在无监督预训练出现之前,训练深度神经网络通常非常困难
深度学习常用术语· 样本(sample)或输入(input)或数据点(data point):训练集中特定的实例。我们在上一章中看到的图像分类问题,每个图像都可以被称为样本、输入或数据点。· 预测(prediction)或输出(output):由算法生成的值称为输出。例如,在先前
硬件层加速。这个维度主要在AI硬件芯片层,目前有GPU、FPGA、ASIC等多种方案,各种TPU、NPU就是ASIC这种方案,通过专门为深度学习进行芯片定制,大大加速模型运行速度。
)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者我们可以将“深度学习”称之为“改良版的神经网络”算法。深度学习又分为卷积神经网络(Convolutional neural networks,简称CNN)和深度置信网(Deep