检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
至此,企业A完成了整个TICS联邦建模的流程,并将模型应用到了营销业务当中。这个预测作业可以作为后续持续预测的依据,企业A可以定期地使用模型预测自己的新业务数据。同时企业A也可以根据新积累的数据训练出新的模型,进一步优化模型预测的精确率,再创建新的联邦预测作业,产出更精准的预测结果供业务使用。 父主题:
模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow)的联邦计算;
数据商业空间中公司B针对公司A的某些数据资产存在业务需求,由于安全性和数据主权的考虑,公司A与公司B基于TICS完成数据资产的交换。基于TICS进行数据资产交换,保证公司A的数据主权、公司B的数据可获得,同时保证交换过程安全可信。 以下是数据拥有方公司A和数据需求方公司B基于TICS平台的操作。 父主题:
创建联邦预测作业 企业A单击“联邦预测 > 批量预测 > 创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用TICS联邦预测进行新数据离线预测
管理任务 任务管理是可信智能计算服务提供的一项查看计算节点参与任务的功能。通过任务管理,用户可以查看到曾在该计算节点上执行过的所有作业,并查看自己这个计算节点在作业中的位置以及数据流向。 通过任务管理,用户可以查看自己的计算节点在空间中的作业参与度,并通过“计算过程”来确认数据是否合理、安全地被使用。
Scikit-Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率。此外由于原始的数据集较小,采用了Imb
从上面两张表可以看出: (1)训练轮数对于联邦学习模型的性能影响不大,这主要是由于乳腺癌数据集的分类相对简单,且数据集经过了扩充导致的; (2)增大每个参与方本地模型训练的迭代次数,可以显著提升最终联邦学习模型的性能。 参与方数据量不同时,独立训练对比横向联邦训练的准确率 本节实验不再将训练集均匀划
什么是项目? 什么是项目? 云的每个区域默认对应一个项目,这个项目由系统预置,用来隔离物理区域间的资源(计算资源、存储资源和网络资源),以区域默认单位为项目进行授权,IAM用户可以访问您账号中该区域的所有资源。 如果您希望进行更加精细的权限控制,可以在区域默认的项目中创建子项目,并在子
保证目录下至少包含一个csv文件,且所有csv文件的特征数保持一致。此外,选择数据集的原始文件,需要指定csv文件的“分隔符”、“是否包含表头”。“是否包含表头”是指文件的第一行是否是每一个字段的名称。 数据结构:配置每个字段的类别标签,包括以下几种: “字段类型”:支持BOOL
联邦预测作业在保障用户数据安全、模型资产安全的前提下,利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计算节点部署在线预测服务的方式,允许用户
项目名 TICS所属的项目名。 Project Name 项目ID TICS所属的项目ID。 1551c7f6c808414d8e9f3c514a170f2e 账户名 用户所属的企业账户名称。 Account Name 用户名 使用云服务的用户名,该用户需要拥有TICS的操作权限。 Username
发布数据集 企业A将自己的需要预测的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建用于预测的数据集。 企业A预测数据集如下: 大数据厂商B仍使用训练时的提供的全量数据作为预测数据集,没有发布新的数据集。 父主题: 使用TICS联邦预测进行新数据离线预测
基本计算能力验证 验证TICS的基础计算能力,以计算各企业在2021年的价值评分,用于评估信贷能力,其中的公式仅为简单的参考计算式。 操作步骤 执行如下的sql作业。 select c.id as `企业id`, 0.5 * a.tax_bal + 0.8 * b.supp_bal
”、“空间名称”、“空间ID”、“证书密码”等。 p12文件:计算节点的密钥文件。 jks文件:CA的“证书”,密钥和证书保证了空间下的用户,部署的计算节点能够数据交互,参与计算。同时,也隔离了不同空间之间的数据访问。 图3 下载计算节点配置 单击页面左侧“计算节点管理”,进入计算节点管理页面。在操作列单击“更多
在“空间管理”页打开“我创建的空间”页签,查找待删除的空间,单击“删除”进行删除。空间状态会更新为删除中。 图7 删除空间 查看空间操作记录 TICS提供透明的空间操作记录。空间的创建、部署、删除、升级回滚操作都会被详细记录。 在详情中,操作进程以可视化的方式展示,清晰展示空间的部署、升级、回
模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,
用户id查询企业B的数据,辅助企业A的实时分析业务。而企业A不想暴露给企业B自己查询的用户id,因为查询该用户的信息隐含着“该用户是企业A的客户”的信息,存在用户隐私泄露的风险。 企业A和企业B可以使用TICS服务的实时隐匿查询功能,既能满足实时业务高效低延迟的业务需求,又能避免
将加密的二进制字节内容使用用户上传的密钥和数据的iv字节解密。 用户上传的密钥是指在上传密钥上传的AES密钥。 binary:必填。加密的数据,参数类型为字节数组byte[]类型。 binary:必填。加密时使用的iv信息,参数类型为字节数组byte[]类型。 返回解密后的字节数组。
MySQL数据库 IP地址 本地的MySQL数据库的IP地址,且该地址允许可信节点所在虚机通过此IP访问。 1xx.1.1.1 端口 MySQL数据库的端口。 3306 驱动文件 对应数据库版本的驱动文件。 mysql-driver.jar 用户名 访问MySQL数据库的用户,该用户拥有MySQL数据库的读、写和删除权限。