检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
由于模型训练过程需要有标签的数据,针对已上传的数据集,手动添加或修改标签。 单击数据集操作列的“标注”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。
待新建的数据集名称。 描述 数据集简要描述。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有
部署服务 评估模板应用后,就可以部署模板应用至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的模板样式的图片。 前提条件 已在文字识别套件控制台选择“通用单模板工作流”新建应用,并完成评估模板步骤,详情请见评估应用。 操作步骤 在“应用开发>部署”页面完
由于模型训练过程需要有标签的数据,针对已上传的数据集,手动添加或修改标签。 单击数据集操作列的“标注”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。
待新建的数据集名称。 描述 数据集简要描述。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
新增标签 查看已标注文本 在数据集详情页,单击“已标注”页签,您可以查看已完成标注的文本列表。您也可以在右侧的“全部标签”中了解当前数据集支持的所有标签信息。 修改标注 当数据完成标注后,您还可以进入已标注页签,对已标注的数据进行修改。 基于文本修改 在数据集详情页,单击“已标注”页签,然后在文本列表中选中待修改的文本。
Pro 提供的原子组件(Atom)灵活编排新的行业工作流。基于AI 市场,用户还可以相互分享不同行业场景的行业AI 工作流。ModelArts Pro 以“授人以渔”的方式助力企业构建AI 能力,赋能不同行业的AI 应用开发者,让AI 变得触手可及。 与ModelArts的关系 ModelArts
行。 基于已设计好的分类标签准备文本数据。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 针对未标注数据,将待标注的内容放在一个文本文件内,通用文本分类工作流仅支持中文文本内容的分类。 针对已标注数据,文本分类的标注对象和标
、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据集样本数应大于100,用于测试的已标注数据应不少于20张,样本数达1万张以上性能更优。
文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签
不支持换行。 基于已设计好的分类标签准备文本数据。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 针对未标注数据,将待标注的内容放在一个文本文件内,通用文本分类工作流仅支持中文文本内容的分类,其他语种的文本分类请使用多语种文本分类工作流。
待新建的数据集存储至OBS的位置。 单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 选择步骤1:准备数据中提前创建好的输出数据集的OBS路径“mapro-nlp/data-out”。 勾选已上传的数据集。
在左侧导航栏选择“应用开发>工作台”。 默认进入“我的应用”页签。 在“我的应用”页签下,选择已创建的应用,单击操作列的“查看”。 进入应用详情页,默认进入“应用资产”页面,查看应用资产。 您也可以单击“应用开发”,切换至“应用开发”页面,查看应用开发配置。 图1 进入应用详情 查看应用资产
Browser+是一个比较常用的图形化工具,支持完善的桶管理和对象管理操作。推荐使用此工具创建桶或上传对象。obsutil是一款用于访问管理OBS的命令行工具,对于熟悉命令行程序的用户,obsutil是执行批量处理、自动化任务较好的选择。 如果您的业务环境需要通过API或SDK执
在“数据标注”页面,会显示自动标注的进度,如果自动标注完成,标注进度为100%。 图1 自动标注完成。 标注完成后,您可以单击“标注结果确认”中的“前往确认”,进入标注概览页。 在标注概览页单击右上方的“开始标注”,进入手动标注数据页面,针对“已标注”的数据进行核对和检查。针对标注错误的数据修改标注。
在“数据标注”页面,会显示自动标注的进度,如果自动标注完成,标注进度为100%。 图1 自动标注完成。 标注完成后,您可以单击“标注结果确认”中的“前往确认”,进入标注概览页。 在标注概览页单击右上方的“开始标注”,进入手动标注数据页面,针对“已标注”的数据进行核对和检查。针对标注错误的数据修改标注。
图片中的多个商品。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。