检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
生成垂域微调(问答对)数据,将问答对数据分为:单轮问答数据、多轮问答数据、检索增强问答数据和其他特定的指令任务数据等类型。 构造特定Prompt格式的数据。通过编写代码对数据进行处理,生成所需的带有Prompt格式的数据,保存成JSON文件。 低质量SFT数据过滤。
图2 查看评估进展 评估完成后,进入“评估报告”页面,可以查看每条数据的评估结果。 在评估结果中,“预期结果”即为变量值(问题)所预设的期望回答,“生成结果”即模型回复的结果。通过比较“预期结果”与“生成结果”的差异可以判断提示词效果。
基模型:基模型经过大规模数据的预训练,能够学习并理解多种复杂特征和模式。这些模型可作为各种任务的基础,包括但不限于阅读理解、文本生成和情感分析等,但不具备对话问答能力。 功能模型:功能模型是在基模型的基础上经过微调,专门适应特定任务,并具备对话问答的能力。
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。
学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模型,可以根据业务需求开发出诸如营销文案生成、阅读理解、智能对话和代码生成等应用功能。
盘古-NLP-BI专业大模型-4K 4096 基于NLP-N2-基础功能模型运用特定专业代码数据训练后的BI专业大模型,具有4K上下文能力。
用户也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 预览提示词效果 单击“查看效果”按钮,输出模型回复结果,用户可以根据预览效果调整提示词的文本和变量。 父主题: 撰写提示词
采用INT8的压缩方式,INT8量化可以显著减小模型的存储大小与降低功耗,并提高计算速度。 模型经过量化压缩后,不支持评估操作,但可以进行部署操作。 创建模型压缩任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型压缩”。
向ToolRetriever中添加工具: // 添加工具 cssToolRetriever.addTools(toolList); 工具添加后,会存储在向量库的索引中,并将指定的字段向量化。
向ToolRetriever中添加工具: # 添加工具 css_tool_retriever.add_tools(tool_list) 工具添加后,会存储在向量库的索引中,并将指定的字段向量化。
标量存储 华为云DCS 否 sdk.memory.dcs.url host信息。
在数据配置中,选择训练数据集、验证数据等参数。 验证数据可选择“从训练数据拆分”和“从已有数据导入”。 从训练数据拆分:取值范围[1%-50%]。设置1%即从训练数据中随机拆分出1%的数据作为验证集,验证集中最多使用100条数据用于模型训练效果评估。
为什么微调后的效果不好 数据量和质量均满足要求,为什么微调后的效果不好 数据量和质量均满足要求,Loss也正常收敛,为什么微调后的效果不好
选择基模型/基础功能模型 盘古-NLP-N2-基础功能模型 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。 来源二:基于大模型的数据泛化。
其中: token_num:已训练的数据量。 step:已完成的训练步数。 batch_size:每个训练步骤中使用的样本数据量。 sequence:每个数据样本中的token数量。 数据量以token为单位。
图4 异常的Loss曲线:平缓且保持高位 Loss曲线异常抖动:Loss曲线异常抖动的原因可能是由于训练数据质量差,比如数据存在噪声或者分布不均衡,导致训练过程不稳定。你可以尝试提升数据质量的方式来解决。 图5 异常的Loss曲线:异常抖动 父主题: 典型训练问题和优化策略
它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。
数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。 父主题: 典型训练问题和优化策略
from pangukitsappdev.memory.redis_message_history import RedisMessageHistory from langchain.memory import ConversationBufferWindowMemory # 定义存储策略
com.huaweicloud.pangu.dev.sdk.memory.ConversationBufferMemory; import com.huaweicloud.pangu.dev.sdk.api.memory.config.MemoryStoreConfig; import org.junit.jupiter.api.Assertions; // 定义存储策略