检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当numThread的值大于GES图实例使用的机器cpu数时,会配置为机器cpu数。 rowCountPerFile的值会影响实际使用的线程数。即当结果集大小和rowCountPerFile的比值小于numThread时,会使用这个比值作为线程数。 如果请求被用户取消,已上传到OBS中的数据不会删除,有关取消Job的API详见取消Job(1
SUBSET:右值是属性值的子集 匹配运算符: PREFIX:右值是左值的前缀 NOTPREFIX:右值不是左值的前缀 SUFFIX:右值是左值的后缀 NOTSUFFIX:右值不是左值的后缀 SUBSTRING:右值是左值的子字符串 NOTSUBSTRING:右值不是左值的子字符串 FUZZY:模糊匹配
基本概念 点 图数据模型中的点代表实体。如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin是Apache
产品优势 大规模 高效的数据组织,让您更有效的对百亿节点千亿边规模的数据进行查询与分析。 高性能 深度优化的分布式图形计算引擎,为您提供高并发、秒级多跳的实时查询能力。 查询分析一体 查询分析一体化,提供丰富的图分析算法,为关系分析、路径的规划、营销推荐等业务提供多样的分析能力。 简单易用
PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可以
紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越大,其在所在图中的位置越靠近中心。 适用场景 紧密中心度算法(Closeness
计费项 图引擎服务的计费简单、易于预测,对您选择的图规格(边数)、数据存储空间和公网流量收费。 表1 GES计费项说明 计费项 计费说明 图规格(边数) 根据您选择的边数大小计费。 针对边数提供预付费实例和按需(小时)两种计费模式。 数据存储空间 GES的数据通过对象存储服务(O
终端节点 终端节点即调用API的请求地址,不同服务不同区域的终端节点不同,您可以从地区和终端节点中查询所有服务的终端节点。 图引擎服务的终端节点如下表所示,请您根据业务需要选择对应区域的终端节点。 表1 图引擎服务的终端节点 区域名称 区域 终端节点(Endpoint) 华北-北京一
Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场合中的共同好友、消费领域共同感兴趣的商品、社区群体共同接触过的人,进一步推测两点集合之间的潜在关系和联系程度。 适用场景 点集共同邻居算法适用于进行关系发掘、产品/好友推荐等图分析技术。
Service,简称GES)是针对以“关系”为基础的“图”结构数据,进行查询、分析的服务。广泛应用于社交关系分析、营销推荐及社会化聆听、信息传播、防欺诈等具有丰富关系数据的场景。 本文档将为您介绍如何在图引擎服务管理控制台完成图数据的相关操作和分析。 使用本服务的操作流程如下所示: 图1 图引擎服务的使用流程 表1
Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景 共同邻居算法(Common Neighbors)适用于电商、社交等多领域的推荐场景。 参数说明
导出图 可将图数据导出至自定义的OBS目录下。 内存版的图支持 1.0.3 以上版本的图数据导出。 持久化版的图支持2.3.14及以上版本的图数据导出。 具体操作步骤如下: 登录图引擎服务管理控制台,在左侧导航栏,选择“图管理”。 在图管理列表中,选择需导出的图,在“操作”列选择“更多”>“导出”。
OBS对象名约束 图引擎服务支持的OBS对象名支持以下字符: 字母数字字符 0-9 a-z A-Z 特殊字符 ! - _ . * ' ( ) 中文 \u4e00-\u9fa5 暂不支持的字符有: 特殊字符 \ { ^ } % ` ] " > [ ~ < # | & @ : , $
属性页签可展示选中点或边的属性信息,也可对单个点或边的属性进行编辑。 属性编辑的操作如下: 在绘图区选中一个点或边,单击右键,选择“查看属性”,会在右侧显示“属性”页签,展示选中点边的属性信息。 若选中的点有多个标签(label),可单击label后的下拉框来查看其它label的属性信息。 图1
理”。 在图管理列表中,选择需删除的图,在“操作”列选择“更多”>“清空数据”。 图1 清空数据 在弹出的确认提示框中,勾选是否“清空图中的元数据”(持久化版的图需要先选择图名称)。 勾选“清空图中的元数据”后,会重置图,清空所有数据和运行中的任务。 元数据清空后不可恢复,请谨慎操作。
增和BFS遍历顺序(temporal bfs算法),搜索周围与之相关联的点,输出对应各节点的到达时间以及和源起点之间的距离。具体操作步骤如下: 在左侧“动态图”操作区的“动态拓展”模块内填写参数: 开始和结束的时间以及属性值在上述章节时间轴设置中已经设置完成,如果要修改参数,单击
关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。 参数说明 表1 关联预测算法(Link Prediction)参数说明
操作场景1:供电范围查询。 包含的子操作: 查找位于变电站中的母线。 查找某根母线的供电范围。 查找某根母线供电范围内的用户点。 操作步骤:您只需要单击运行键,如有弹框,在弹框内选择母线值,运行后即可在画布显示效果图。 操作场景2:停电故障分析。 包含的子操作: 从停电用户点回溯定位故障点。
否 查询的起始节点ID集合 String - 标准csv格式,ID之间以英文逗号分隔,例如:["Alice","Nana"] n 否 枚举的满足过滤条件的圈的个数的上限 Integer [1,100000] 100 statistics 否 是否输出所有满足过滤条件的圈的个数 Boolean