检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
必须大于0,不配置默认值为1。当小于1时,代表滚动升级时增加的实例数的百分比;当大于1时,代表滚动升级时最大扩容的实例数。 max_unavailable 否 Float 必须大于0,不配置默认值为0。当小于1时,代表滚动升级时允许缩容的实例数的百分比;当大于1时,代表滚动升级时允许缩容的实例数。 terminat
sh方式启动(历史版本) 本章节介绍历史版本的训练任务启动方式。6.3.912版本同时兼容历史版本的训练任务启动方式。 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定
sh方式启动(历史版本) 本章节介绍历史版本的训练任务启动方式。6.3.912版本同时兼容历史版本的训练任务启动方式。 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定
ModelArts”后,选择ModelArts的云服务区域(即要部署服务的云服务区),单击“确认”,跳转至ModelArts的“算法管理>我的订阅”中。 步骤3:使用订阅算法创建训练作业 算法订阅成功后,算法将呈现在“算法管理>我的订阅”中,您可以使用订阅的“ResNet_v1_50”算法创建训练作业,获得模型。
设置推理核采样。调整输出文本的多样性,数值越大,生成文本的多样性就越高。 1 top_k 选择在模型的输出结果中选择概率最高的前K个结果。 20 在对话框中输入问题,查看返回结果,在线体验对话问答。 后续操作 如果不再需要使用此模型服务,建议清除相关资源,避免产生不必要的费用。 在MaaS服务的“模型
annotation_format_config 导入的标注格式的配置参数。 否 AnnotationFormatConfig excluded_labels 不导入包含指定标签的样本。 否 Label的列表 import_annotated 用于导入智能标注结果的任务,是否导入原数据集中已标注的样本到待确认,默认
下图展示了多卡profiling分析的overall模块,包含集群快慢卡统计数值(slow rank,用于分析计算和任务下发的快慢卡)和集群带宽统计数值(slow link,用于分析集群中的网络通信慢链路)。点开slow rank模块,html中会基于表格展示每张卡不同step的计算耗时、通信耗时和空闲耗时
签之间的分隔符可通过text_sample_separator和text_label_separator指定。 text_label_separator 否 String 标签与标签之间的分隔符,默认为逗号分隔,分隔符需转义。分隔符仅支持一个字符,必须为大小写字母,数字和“!@#$%^&*_=|
设置推理核采样。调整输出文本的多样性,数值越大,生成文本的多样性就越高。 1 top_k 选择在模型的输出结果中选择概率最高的前K个结果。 20 在对话框中输入问题,查看返回结果,在线体验对话问答。 图5 体验模型服务 后续操作 如果不再需要使用此模型服务,建议清除相关资源,避免产生不必要的费用。 在ModelArts
ing”也请替换为自定义的值。 选择左侧导航栏的“总览”,单击页面右上角的“登录指令”,在弹出的页面中单击复制登录指令。 此处生成的登录指令有效期为24小时,如果需要长期有效的登录指令,请参见获取长期有效登录指令。获取了长期有效的登录指令后,在有效期内的临时登录指令仍然可以使用。
订阅免费模型 发布免费模型 数据集的分享和下载 AI Gallery的资产集市提供了数据集的分享和下载。订阅者可在AI Gallery搜索并下载满足业务需要的数据集,存储至当前帐号的OBS桶或ModelArts的数据集列表。分享者可将已处理过的数据集发布至AI Gallery。 下载数据集
可以快速运行。 图8 修改batch_size AI开发过程中的数据集开发及模型开发是和硬件规格无关的,而且这一部分的开发耗时是最长的,因此可以先在本地PC的CPU环境进行数据集和模型开发调试。 本例中,因为样例代码已经支持在CPU上进行训练,因此用户能够在CPU上完成整个训练流
ing”也请替换为自定义的值。 选择左侧导航栏的“总览”,单击页面右上角的“登录指令”,在弹出的页面中单击复制登录指令。 此处生成的登录指令有效期为24小时,如果需要长期有效的登录指令,请参见获取长期有效登录指令。获取了长期有效的登录指令后,在有效期内的临时登录指令仍然可以使用。
参数错误 请检查填写的参数。 400 ModelArts.0107 The values of the request parameters ({0},{1}) are invalid. 请求的参数值 ({0},{1})是无效的. 检查提示的参数值是否是有效的。 400 ModelArts
机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景,ModelArts提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。 选择算法的实现方式 M
ModelArts的用户需要为不同的业务目标开发算法、管理和部署模型,此时可以创建多个工作空间,把不同应用开发过程的输出内容划分到不同工作空间中,便于管理和使用。 工作空间支持3种访问控制: PUBLIC:租户(主账号和所有子账号)内部公开访问。 PRIVATE:仅创建者和主账号可访问。
创建模型不同方式的场景介绍 AI开发和调优往往需要大量的迭代和调试,数据集、训练代码或参数的变化都可能会影响模型的质量,如不能统一管理开发流程元数据,可能会出现无法重现最优模型的现象。 ModelArts的模型可导入所有训练生成的元模型、上传至对象存储服务(OBS)中的元模型和容器镜像中
Ascend-vLLM的主要特点 易用性:Ascend-vLLM简化了在大模型上的部署和推理过程,使开发者可以更轻松地使用它。 易开发性:提供了友好的开发和调试环境,便于模型的调整和优化。 高性能:通过自研特性和针对NPU的优化,如PD分离、前后处理、sample等,实现了高效的推理性能。 Ascend-vLLM架构
Ascend-vLLM的主要特点 易用性:Ascend-vLLM简化了在大模型上的部署和推理过程,使开发者可以更轻松地使用它。 易开发性:提供了友好的开发和调试环境,便于模型的调整和优化。 高性能:通过自研特性和针对NPU的优化,如PD分离、前后处理、sample等,实现了高效的推理性能。 Ascend-vLLM架构
型输出进行可对比的误差分析(精度)。 模型自动调优工具 AOE(Ascend Optimization Engine)是一个昇腾设备上模型运行自动调优工具,作用是充分利用有限的硬件资源,以满足算子和整网的性能要求。在推理场景下使用,可以对于模型的图和算子运行内置的知识库进行自动优化,以提升模型的运行效率。