检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
调用启动智能任务接口给图像分类的数据集创建一个智能标注任务。 调用获取智能任务的信息接口根据智能标注的任务ID查询任务详情。 待智能标注任务完成后,调用查询智能标注的样本列表接口可以查看标注结果。 调用批量更新样本标签根据获取的智能标注样本列表确认智能标注结果。 前提条件 已获取IAM的EndPoint
使用Grafana查看AOM中的监控指标 安装配置Grafana 配置Grafana数据源 配置仪表盘查看指标数据 父主题: ModelArts Standard资源监控
自定义名称。 URL 设置为从步骤1获取的HTTP URL信息。 Basic auth 建议开启。 Skip TLS Verify 建议开启。 User 设置为从步骤a获取的用户名信息。 Password 设置为从步骤a获取的密码信息。 配置完成后,单击下方的“Save & test”,展示“Data
2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。
启动智能任务 功能介绍 启动智能任务,支持启动“智能标注”和“自动分组”两大类智能任务。可通过指定请求体中的“task_type”参数来启动某类任务。数据路径或工作路径位于KMS加密桶的数据集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的标
目前只有“图像分类”和“物体检测”类型的标注作业支持智能标注功能。 启动智能标注时,需标注作业存在至少2种标签,且每种标签已标注的图片不少于5张。 启动智能标注时,必须存在未标注图片。 启动智能标注前,保证当前系统中不存在正在进行中的智能标注任务。 检查用于标注的图片数据,确保您的图片数据中,不存在RGBA四通道
停止智能任务 功能介绍 停止智能任务,支持停止“智能标注”和“自动分组”两大类智能任务。可通过指定路径参数“task_id”来停止某个具体任务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
delArts所有监控指标。 方式三:通过Grafana查看所有监控指标 当AOM的监控模板不能满足用户诉求时,用户可以使用Grafana可视化工具来查看与分析监控指标。Grafana支持灵活而又复杂多样的监控视图和模板,为用户提供基于网页仪表面板的可视化监控效果,使用户更加直观地查看到实时资源使用情况。
在Windows上安装配置Grafana 在Linux上安装配置Grafana 在Notebook上安装配置Grafana 父主题: 使用Grafana查看AOM中的监控指标
监控安全风险 ModelArts支持监控ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作,帮助用户更好地了解服务和模型的各项性能指标。详细内容请参见ModelArts支持的监控指标。 父主题: 安全
导入成功后,在Dashboards下,即可看到导入的视图,单击视图即可打开监控。 模板使用 导入成功后,单击想查看的模板即可查看响应内容。这里介绍一些常用功能的使用。 切换数据源和资源池 图5 切换数据源和资源池 单击红框中相应位置,即可出现下拉框,修改响应的数据源和资源池。 刷新数据 单击右上角的图标,即可刷新整
使用自动分组智能标注作业 为了提升智能标注算法精度,可以均衡标注多个类别,有助于提升智能标注算法精度。ModelArts内置了分组算法,您可以针对您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类
度更高的模型。首先,针对智能标注和采集筛选任务,难例的发现操作是系统自动执行的,无需人工介入,仅需针对标注后的数据进行确认和修改即可,提升数据管理和标注效率。其次,您可以基于难例的情况,补充类似数据,提升数据集的丰富性,进一步提升模型训练的精度。 在数据集管理中,对难例的管理有如下场景。
在Linux上安装配置Grafana 适用场景 本章节适用于在Linux操作系统的PC中安装配置Grafana。 前提条件 一台可访问外网的Ubuntu服务器。如果没有请具备以下条件: 准备一台ECS服务器(建议规格选8U或者以上,镜像选择Ubuntu,建议选择22.04版本,本
servers”字段,新增对应的key-value键值对即可。 适配JupyterLab访问地址。 在左侧导航打开“ vi /home/ma-user/work/grf/grafana-9.1.6/conf/defaults.ini”文件。 修改[server]中的“root_url”和“serve_from_sub_path”字段。
启,如果已经开启,则直接进入4。 登录Grafana。 Grafana默认在本地的3000端口启动,打开链接http://localhost:3000,出现Grafana的登录界面。首次登录用户名和密码为admin,登录成功后请根据提示修改密码。 父主题: 安装配置Grafana
2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。
监控资源 用户可以通过资源占用情况窗口查看计算节点的资源使用情况,最多可显示最近三天的数据。在资源占用情况窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“g
2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。
使用CES监控Lite Server资源 场景描述 Lite Server的监控能力依赖于CES云监控服务。本文主要介绍如何对接CES云监控服务,对Lite Server上的资源和事件进行监控。 监控方案介绍 监控概述请参考BMS官方文档。除文档所列支持的镜像之外,目前还支持Ubuntu20