检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4.个人防护装备:确保您和您的同事穿戴正确的个人防护装备,如安全鞋、透明眼镜或面罩、手套等。\n\n5
践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4.个人防护装备:确保您和您的同事穿戴正确的个人防护装备,如安全鞋、透明眼镜或面罩、手套等。\n\n5
254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
存在四通道图片,智能标注任务将运行失败,因此,请从数据集中删除四通道图片后,再启动智能标注。 启动智能标注作业 登录ModelArts管理控制台,在左侧菜单栏中选择“数据准备 > 数据标注”,进入“数据标注”管理页面。 在标注作业列表中,选择“物体检测”或“图像分类”类型的标注作
如果您使用的AI引擎为支持列表之外的,建议使用自定义镜像的方式创建训练作业。 AI Engine 选择代码使用的AI引擎及其版本。支持的AI引擎与ModelArts管理控制台里ModelArts支持的预置镜像列表一致。 Boot File Path 训练启动文件,所选启动文件必须是当前PyCharm训练工程中的文件。当“Algorithm
254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
通过指定模型输出进行可对比的误差分析(精度)。 模型自动调优工具 AOE(Ascend Optimization Engine)是一个昇腾设备上模型运行自动调优工具,作用是充分利用有限的硬件资源,以满足算子和整网的性能要求。在推理场景下使用,可以对于模型的图和算子运行内置的知识库进行自动优化,以提升模型的运行效率。
continuous:指定时表示这个超参是连续类型的。连续类型的超参在算法使用于训练作业时,控制台显示为输入框。 discrete:指定时表示这个超参是离散类型的。离散类型的超参在算法使用于训练作业时,控制台显示为下拉选择框架。 lower_bound String 超参下界。 upper_bound
continuous:指定时表示这个超参是连续类型的。连续类型的超参在算法使用于训练作业时,控制台显示为输入框。 - discrete:指定时表示这个超参是离散类型的。离散类型的超参在算法使用于训练作业时,控制台显示为下拉选择框架。 lower_bound 否 String 超参下界。 upper_bound
践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4.个人防护装备:确保您和您的同事穿戴正确的个人防护装备,如安全鞋、透明眼镜或面罩、手套等。\n\n5
254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态
254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 检查环境。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。
continuous:指定时表示这个超参是连续类型的。连续类型的超参在算法使用于训练作业时,控制台显示为输入框。 discrete:指定时表示这个超参是离散类型的。离散类型的超参在算法使用于训练作业时,控制台显示为下拉选择框架。 lower_bound String 超参下界。 upper_bound
v1.28.* GPU 支持在容器中使用GPU显卡的设备管理插件。 2.0.48 v1.(23|25).* huawei-npu 2.1.22(推荐) v1.(23|25|28).* NPU 支持容器里使用huawei NPU设备的管理插件。 volcano 1.15.8(推荐) v1
践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4.个人防护装备:确保您和您的同事穿戴正确的个人防护装备,如安全鞋、透明眼镜或面罩、手套等。\n\n5
步提升了在复杂任务上对大模型进行微调的效率和性能,核心在于其独特的学习率比率(loraplus_lr_ratio)机制,适用于那些需要精确控制模型微调过程的场景,当前该策略仅支持qwen1.5-7B指令监督式微调。 全参训练(Full):这种策略主要对整个模型进行微调。这意味着在
启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/ll
启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。
启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/ll