检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
由于窗口使用自定义窗口,这时窗口的状态使用ListState,且同一个key值下,value的值非常多,每次新的value值到来都要使用RocksDB的merge()操作;触发计算时需要将该key值下所有的value值读出。 RocksDB的方式为merge()->merge()....->merge()->read
由于窗口使用自定义窗口,这时窗口的状态使用ListState,且同一个key值下,value的值非常多,每次新的value值到来都要使用RocksDB的merge()操作;触发计算时需要将该key值下所有的value值读出。 RocksDB的方式为merge()->merge()....->merge()->read
由于窗口使用自定义窗口,这时窗口的状态使用ListState,且同一个key值下,value的值非常多,每次新的value值到来都要使用RocksDB的merge()操作;触发计算时需要将该key值下所有的value值读出。 RocksDB的方式为merge()->merge()....->merge()->read
使用mapPartitions,按每个分区计算结果 如果每条记录的开销太大,例: rdd.map{x=>conn=getDBConn;conn.write(x.toString);conn.close} 则可以使用MapPartitions,按每个分区计算结果,如: rdd.mapPartitions(records
配置Hive对接MemArtsCC 操作场景 本章节介绍在存算分离场景下如何配置Hive任务中集成MemArtsCC缓存,MemArtsCC会在将热点数据存储在计算侧集群,可以起到降低OBS服务端带宽的作用,利用MemArtsCC的本地存储,访问热点数据不必跨网络,可以提升Hive的数据读取效率。 前提条件
配置在Spark对接MemArtsCC 操作场景 本章节介绍在存算分离场景下如何配置Spark任务中集成MemArtsCC缓存,MemArtsCC会在将热点数据存储在计算侧集群,可以起到降低OBS服务端带宽的作用,利用MemArtsCC的本地存储,访问热点数据不必跨网络,可以提升Spark的数据读取效率。 前提条件
针对所有参与Join的表,依次选取一个表作为第一张表。 依据选取的第一张表,根据代价选择第二张表,第三张表。由此可以得到多个不同的执行计划。 计算出代价最小的一个计划,作为最终的顺序优化结果。 代价的具体计算方法: 当前版本,代价的衡量基于Join出来的数据条数:Join出来的条数越少,代价越小。Join条数的多少
景的开发思路: 接收Kafka中数据,生成相应DStream。 对单词记录进行分类统计。 计算结果,并进行打印。 方案架构 Spark Streaming是一种构建在Spark上的实时计算框架,扩展了Spark处理大规模流式数据的能力。当前Spark支持两种数据处理方式:Direct
loomfiter机制,将布隆索引内容写入到Parquet文件的footer中。 Bucket索引:在写入数据过程中,通过主键进行Hash计算,将数据进行分桶写入;该索引写入速度最快,但是需要合理配置分桶数目;Flink、Spark均支持该索引写入。 状态索引:Flink引擎独有
当字段的值与实际的类型不匹配时,该行数据会成为脏数据。 样例 以sqlserver 2014为例,创建测试表test: create table test (id int, name text, value text); 往测试表中插入三条数据: insert into test values (1,'zhangshan'
由于窗口使用自定义窗口,这时窗口的状态使用ListState,且同一个key值下,value的值非常多,每次新的value值到来都要使用RocksDB的merge()操作;触发计算时需要将该key值下所有的value值读出。 RocksDB的方式为merge()->merge()....->merge()->read
开发思路 场景说明 假定某个业务Kafka每1秒就会收到1个单词记录。 基于某些业务要求,开发的Spark应用程序实现如下功能: 实时累加计算每个单词的记录总数。 “log1.txt”示例文件: LiuYang YuanJing GuoYijun CaiXuyu Liyuan FangBo
开发思路 场景说明 假定某个业务Kafka每1秒就会收到1个单词记录。 基于某些业务要求,开发的Spark应用程序实现如下功能: 实时累加计算每个单词的记录总数。 “log1.txt”示例文件: LiuYang YuanJing GuoYijun CaiXuyu Liyuan FangBo
由于窗口使用自定义窗口,这时窗口的状态使用ListState,且同一个key值下,value的值非常多,每次新的value值到来都要使用RocksDB的merge()操作;触发计算时需要将该key值下所有的value值读出。 RocksDB的方式为merge()->merge()....->merge()->read
配置Flink作业状态后端冷热数据分离存储 本章节适用于MRS 3.3.0及以后版本。 在宽表关联计算场景中,每张表字段较多,导致状态后端数据量较大,严重影响状态后端性能时,可开启状态后端冷热分级存储功能。 开启状态后端冷热分级存储功能步骤 安装包含Flink、HBase等服务的
本的单词数量。 Hadoop集群完全使用开源Hadoop生态,采用Yarn管理集群资源,提供Hive、Spark离线大规模分布式数据存储和计算及进行海量数据分析与查询的能力。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。 创建MRS集群:创建一个MRS 3.2
当字段的值与实际的类型不匹配时,该行数据会成为脏数据。 样例 以sqlserver 2014为例,创建测试表test: create table test (id int, name text, value text); 往测试表中插入三条数据: insert into test values (1,'zhangshan'
HDFS接口进行的。 Hive与MapReduce组件的关系 Hive的数据计算依赖于MapReduce。MapReduce也是Apache的Hadoop项目的子项目,它是一个基于Hadoop HDFS分布式并行计算框架。Hive进行数据分析时,会将用户提交的HQL语句解析成相应的Ma
1通过Hive的JDBC接口连接MRS集群成功,但是使用MRS 1.9.0集群的Hive 2.3.2,通过Hive的JDBC接口连接MRS集群进行计算任务报错。 报错信息如下: Caused by: org.apache.zookeeper.KeeperException$ConnectionLossException:
MRS集群内使用主流的大数据Hadoop,目前支持Hadoop 3.x版本,并且随集群演进更新版本。 同时MRS也支持用户将数据存储在OBS服务中,使用MRS集群仅作数据计算处理的存算分离模式。 更多信息MRS各版本支持的组件情况请参见MRS组件版本一览表。 父主题: 产品咨询类