检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
clone下载Megatron-LM、MindSpeed、ModelLink源码(install.sh中会自动下载配套版本,如果手动下载源码还需修改版本)至llm_train/AscendSpeed文件夹中。下载的源码文件结构如下: |——AscendCloud-LLM |──llm_train
clone下载Megatron-LM、MindSpeed、ModelLink源码(install.sh中会自动下载配套版本,如果手动下载源码还需修改版本)至llm_train/AscendSpeed文件夹中。下载的源码文件结构如下: |——AscendCloud-LLM |──llm_train
clone下载Megatron-LM、MindSpeed、ModelLink源码(install.sh中会自动下载配套版本,如果手动下载源码还需修改版本)至llm_train/AscendSpeed文件夹中。下载的源码文件结构如下: |——AscendCloud-LLM |──llm_train
下载ComfyUI软件包。 下载ComfyUI源码并切换分支。 git clone https://github.com/comfyanonymous/ComfyUI.git cd ComfyUI git checkout a82fae23757 如果上述方法无法下载ComfyUI源码,可参考如下操作,手
docker exec -it ${container_name} bash Step4 下载并安装Open-clip源码包 从官网下载Open-clip源码包。 git clone https://github.com/mlfoundations/open_clip.git cd
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 kubectl exec -it {pod_name} bash conda create --name awq --clone PyTorch-2
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 kubectl exec -it {pod_name} bash conda create --name awq --clone PyTorch-2
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 kubectl exec -it {pod_name} bash conda create --name awq --clone PyTorch-2
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.4.2-py3-none-any.whl # 推理安装包
选择需要发布的数据集。 许可证类型 根据业务需求和数据集类型选择合适的许可证类型。 单击许可证类型后面的感叹号可以查看许可证详情。 说明: 部分许可证网站说明地址是海外网站,用户可能会因网络限制无法访问。 谁可以看 设置此数据集的公开权限。可选值有: “公开”:表示所有使用AI Gallery的用户都可以查看且使用该资产。
例如:${container_work_dir}/,然后解压到工作目录下。 步骤五:下载ComfyUI代码并安装依赖 下载ComfyUI源码 从github下载ComfyUI代码并切换到0.2.2分支。 cd ${container_work_dir} git clone -c
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.3-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train.py中修改优化器为apex混合精度模式下的DDP优化方式(修改点:注释第
com/ascend/MindSpeed.git cd MindSpeed git checkout 4ea42a23 cd .. 完整的源码目录结构如下: |——AscendCloud-LLM |──llm_train # 模型训练代码包