检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
以出行场景的司乘安全算法为例,介绍使用ModelArts进行流程化服务部署和更新、自动化服务运维和监控的实现步骤。 图3 司乘安全算法 将用户本地开发完成的模型,使用自定义镜像构建成ModelArts Standard推理平台可以用的模型。具体操作请参考从0-1制作自定义镜像并创建模型。
IAM/AKSK认证方式:需要在header的X-Auth-Token字段上填入该租户在该region的domain级别的token。具体指导参见连接:获取IAM用户Token。 APP认证的方式:APP认证方式又可以细分为AppCode认证和APP签名认证。 AppCode认证需要在header的X-
类型type、属性properties,必需属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured Text
类型type、属性properties,必选属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured Text
要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 同时开启故障快恢和断点续训时需满足以下条件: 如果用户指定${USER_CONVERTED_CKPT_PATH} 因故障快恢读取权重的优先级最高则训练过程的权重保存路径${OUTPUT_SAV
-new-env/logo-* 说明:此处“.local/share/jupyter/kernels/sfs-new-env”为举例,请以用户实际的安装路径为准。 图1 安装路径回显 刷新JupyterLab页面,可以看到新的kernel。 重启Notebook后kernel需要重新注册。
co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 git clone -b v0.2.5 https://github.com/casper-hansen/AutoAWQ
/home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps
} ] } ] 当"mmcv-full"安装失败,原因可能是基础镜像中没有安装gcc,无法编译导致安装失败,此时需要用户使用线下wheel包安装。 示例如下: "dependencies": [ { "installer": "pip",
梯度裁剪和亲和优化器等多个可替换的API,用户可根据代码堆栈找到需要替换的具体源码,然后根据API instruction跳转后的参考文档修改源代码,从而使能亲和API提升训练性能。注意这里提示的亲和API并非都能提升训练性能,需要用户替换后实测,由于有一定代码修改和测试成本,因此优先级可以视作最低。
/home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps
/home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps
创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。 图2 开启故障重启 Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。本次qwenvl模型选用 8* ascend-snt9b。 图3 选择资源池规格 在OBS中新建一个l
创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。 图2 开启故障重启 Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。本次qwenvl模型选用 8* ascend-snt9b。 图3 选择资源池规格 在OBS中新建一个l
/home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps
work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。
鱼风险。其中: 租户可见域名:指租户可访问的域名,需要格外重视安全性和合规性。 租户不可见域名:指华为云服务在内网相互调用使用的域名,外部用户无法访问到对应的权威DNS服务器;或者Internet受限访问域名,只允许华为办公网络黄&绿区华为员工及合作方或外包人员访问的域名。 华为
AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize
AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create
单模型性能调优AOE 使用AOE工具可以在模型转换阶段对于模型运行和后端编译过程进行执行调优。请注意AOE只适合静态shape的模型调优。在AOE调优时,容易受当前缓存的一些影响,建议分两次进行操作,以达到较好的优化效果(第一次执行生成AOE的知识库,在第二次使用时可以复用)。在