检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
output:生成的指令的答案。
使用临时存储路径 HostPath 适用于以下场景: 容器工作负载程序生成的日志文件需要永久保存。 需要访问宿主机上Docker引擎内部数据结构的容器工作负载。 节点存储。多个容器可能会共享这一个存储,会存在写冲突的问题。 Pod删除后,存储不会清理。
同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现文本分类
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本
output:生成的指令的答案。
output:生成的指令的答案。
output:生成的指令的答案。
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本
数据集版本文件目录结构 由于数据集是基于OBS目录管理的,发布为新版本后,对应的数据集输出位置,也将基于新版本生成目录。 以图像分类为例,数据集发布后,对应OBS路径下生成,其相关文件的目录如下所示。
bash sample_video_65.sh 使用训练生成的权重文件推理 在Step7 启动训练服务完成后,会在工作目录/home/ma-user/Open-Sora-Plan1.0/下自动生成一个t2v-f17-256-img4-videovae488-bf16-ckpt-xformers-bs4
上传OBS的文件规范: 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。如:“/bucketName/data-cat”。
<bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录 |──ascendcloud_patch
# modal 评测静态性能脚本 |--- utils.py ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本
# modal 评测静态性能脚本 |--- utils.py ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本
# modal 评测静态性能脚本 |--- utils.py ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本
提交训练作业,训练完成后,生成的权重文件自动保存在SFS Turbo中,保存路径为:/home/ma-user/work/llm_train/saved_dir_for_output/llama2-13b/saved_models/。