检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
问题现象 子账号在使用自定义OCR(ModelArts Pro文字识别套件)生成的api时,出现如下报错。表示用户,没有OCR权限或没有开通ModelArts Pro服务。 "ModelArts.4204"、"Request API error.
通过上传模板图片、框选参照字段和识别区,自动训练并生成文字识别模型,并将生成的模型部署为在线服务。部署完成后,用户可通过在线服务识别身份证模板中的文字。 首先,请仔细阅读准备工作罗列的要求,提前完成准备工作。
本章节介绍如何使用视觉套件中的零售商品识别工作流开发应用,以蛋糕店的蛋糕商品为样例,通过上传训练数据、标注数据、训练模型,并将生成的模型部署为在线服务。部署完成后,用户可通过在线服务识别出图片中的所有蛋糕以及图片中每个蛋糕的类别,也可以直接调用API和SDK识别。
支持开发属于自己的文字识别应用,服务自动生成“API URI”,您可以调用当前模板服务。调用方式请见API调用指南。错误码请参见错误码。
ModelArts Pro根据预置工作流生成指定场景模型,无需深究底层模型开发细节。ModelArts Pro致力于解决通用API局限性、AI算法开发门槛高等难题,提供行业AI定制化开发套件,沉淀行业知识,让开发者聚焦自身业务,底层依托ModelArts平台。 图1 功能架构
新建应用 开发应用 零售商品识别工作流 根据工作流指引,开发商品识别服务,通过上传训练数据,训练生成商品识别模型,自主更新和调整模型精度,实现高精度的商品识别功能。
数据集发布后,相关文件的目录结构说明 由于数据集是基于OBS目录管理的,发布为新版本后,对应的数据集输出位置,也将基于新版本生成目录。 父主题: 通用文本分类工作流
通过上传模板图片、框选参照字段和识别区、上传训练集,自动训练并生成模板分类器和文字识别模型,并将生成的模型部署为在线服务。部署完成后,用户可通过在线服务自动分类模板并识别模板中的文字。 首先,请仔细阅读准备工作罗列的要求,提前完成准备工作。
新建应用 开发应用 通用文本分类工作流 根据工作流指引,开发文本分类服务,通过上传训练数据,训练生成文本预测分类模型,自主更新和调整模型精度,实现高精度的文本预测分类。
一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。
一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“热轧钢板表面缺陷检测工作流”新建应用,并训练模型,详情请见训练模型。
一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择“通用实体抽取工作流”新建应用,并训练模型,详情请见训练模型。
一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并训练模型,详情请见训练模型。
一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“刹车盘识别工作流”新建应用,并训练模型,详情请见训练模型。
往往不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。
一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“无监督车牌检测工作流”新建应用,并训练模型,详情请见训练模型。
一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理套件控制台选择“通用文本分类工作流”新建应用,并训练模型,详情请见训练模型。
一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“云状识别工作流”新建应用,并训练模型,详情请见训练模型。
一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并训练模型,详情请见训练模型。
一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。