检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
工作负载Pod异常 Pod状态为Pending 当Pod状态为“Pending”,事件中出现“实例调度失败”的信息时,可根据具体事件信息确定具体问题原因。具体参考链接为工作负载状态异常定位方法。 通过以下命令打印Pod日志信息。 kubectl describe pod ${pod_name}
mc2融合算子报错 Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training
单模型性能测试工具Mindspore lite benchmark 在模型精度对齐后,针对Stable Diffusion模型性能调优,您可以通过AOE工具进行自助性能调优,进一步可以通过profiling工具对于性能瓶颈进行分析,并针对性地做一些调优操作。 您可以直接使用ben
kv-cache-int8量化 什么是kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。 约束限制 当前支持per-token动态量化(推荐), per-tensor静态量化以及per-tensor+per-head静态量化。
样例配置截图如下: Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 输入指定的目录在训练开始时,平台会自动将指定的OBS路径下的文件copy到容器内 输出指定的目录在训练过程中,平台会自动将容器内的文件copy到指定的OBS路径下
在Notebook中通过Dockerfile从0制作自定义镜像 场景说明 本案例将基于ModelArts提供的MindSpore预置镜像,并借助ModelArts命令行工具(请参考ma-cli镜像构建命令介绍),通过加载镜像构建模板并修改Dockerfile,构建出一个新镜像,最后注册后在Notebook使用。
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already
网卡名称错误 当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 图1 网卡名称错误 export GLOO_SOCKET_IFNAME=enp67s0f5
网卡名称错误 当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 图1 网卡名称错误 export GLOO_SOCKET_IFNAME=enp67s0f5
显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。
其他实例调度失败问题 首先通过打印Pod日志信息。根据错误信息,可通过访问官网链接:工作负载异常:实例调度失败,进行查找。 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。
显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already
ECS获取和上传基础镜像 Step1 创建镜像组织 在SWR服务页面创建镜像组织。 图1 创建镜像组织 Step2 登录ECS服务器 根据创建ECS服务器创建完成ECS服务器后,单击“远程登录”,可使用华为CloudShell远程登录如图所示。后续安装Docker、获取镜像、构建镜像等操作均在该ECS上进行。
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already