已找到以下 10000 条记录
  • 深度学习应用开发学习

    介绍了神经元模型起源和全连接层概念,以及ReLU等激活函数作用。深度学习核心是构建多层神经网络,而卷积神经网络(CNN)发展,尤其是AlexNet在2012年突破,让我对深度学习强大能力有了更深认识。在学习过程中,我也了解到了不同深度学习开发框架,包括Th

    作者: 黄生
    22
    0
  • 深度学习之推断

    在Bagging情况下,每一个模型在其相应训练集上训练到收敛。在Dropout情况下,通常大部分模型都没有显式地被训练,因为通常父神经网络会很大,以致于到宇宙毁灭都不可能采样完所有的子网络。取而代之是,在单个步骤中我们训练一小部分子网络,参数共享会使得剩余子网络也能有好参数设定

    作者: 小强鼓掌
    426
    4
  • 深度学习之Dropout

    处理。Dropout提供了一种廉价Bagging集成近似,能够训练和评估指数级数量神经网络。具体而言,Dropout训练集成包括所有从基础网络除去非输出单元后形成子网络。最先进神经网络基于一系列仿射变换和非线性变换,我们只需将一些单元输出乘零就能有效地删除一个单元。这

    作者: 小强鼓掌
    1023
    2
  • 深度学习卷积操作

    卷积操作就是filter矩阵跟filter覆盖图片局部区域矩阵对应每个元素相乘后累加求和。

    作者: 我的老天鹅
    630
    8
  • 深度学习之动量

    点采取步骤。我们可以看到,一个病态条件二次目标函数看起来像一个长而窄山谷或具有陡峭边峡谷。动量正确地纵向穿过峡谷,而普通梯度步骤则会浪费时间在峡谷窄轴上来回移动。比较图 4.6 ,它也显示了没有动量梯度下降行为。

    作者: 小强鼓掌
    530
    3
  • 深度学习之PCA

    PCA这种将数据变换为元素之间彼此不相关表示能力是PCA一个重要性质。它是消除数据中未知变动因素简单表示实例。在PCA中,这个消除是通过寻找输入空间一个旋转(由 W 确定),使得方差主坐标和 z 相关新表示空间基对齐。虽然相关性是数据元素间依赖关系一个重要范畴,但我们对于能够消

    作者: 小强鼓掌
    541
    1
  • 深度学习TensorBoard错误

    No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解

    作者: timo
    4077
    2
  • 深度学习现实应用《深度学习与Mindspore实践》今天你读书了吗?

    换成文本技术。从早期基于模板方法到严格统计模型,再到如今深度模型,语音识别技术已经经历了几代更迭。 图像识别图像识别是深度学习最成功应用之一。深度学习在计算机视觉领域突破发生在2012年,Hinton教授研究小组利用卷积神经网络架构(AlexNet)大幅降低了ImageNet

    作者: QGS
    1026
    2
  • 深度学习应用开发》学习笔记-06

    什么是深度深度就是简单量变。神经网络到深度神经网络,就是每一层节点搞多一点,层数也搞多一点。但是如果说网络越深,节点越多,表现能力就越好,这个我看未必,过犹未及嘛深度神经网络本身没再多讲,讲的是卷积神经网络就是CNN。这个是在60年代时候,在研究猫神经元时发现,199

    作者: 黄生
    1127
    3
  • 深度学习修炼(一)——从机器学习转向深度学习

    说,各种深度学习框架已经提供了我们所需各种颜料。我们要做,就是利用不同颜料,在空白纸上,一笔一划画出我们所需网络。 深度学习改变了传统互联网业务。第一次听到这个名词时可能大家都会对这方面的知识感到一头雾水,到底什么是深度学习?实际上,深度学习已经应用到生活中点点滴滴

    作者: ArimaMisaki
    发表时间: 2022-08-08 16:45:09
    244
    0
  • 深度学习框架TensorFlow

    语言与系统支持TensorFlow支持多种客户端语言下安装和运行。截至版本1.12.0,绑定完成并支持版本兼容运行语言为C和Python,其它(试验性)绑定完成语言为JavaScript、C++、Java、Go和Swift,依然处于开发阶段包括C#、Haskell、Julia、Ruby、Rust和Scala

    作者: QGS
    555
    0
  • 深度学习LSTM模型

    长短期记忆(Long short-term memory, LSTM)是一种特殊RNN,主要是为了解决长序列训练过程中梯度消失和梯度爆炸问题。简单来说,就是相比普通RNN,LSTM能够在更长序列中有更好表现。

    作者: 我的老天鹅
    1892
    10
  • 什么是深度学习

    何得到输出流程图中最长路径长度记为模型深度。另一方面,在深度概率模型中,也把描述概念之间如何相互关联深度而非计算图深度记为一种模型深度。值得注意是,后者用来计算表示计算图可能比概念图要深得多。鉴于这两种观点共存,一般在一个模型有多深才算作“深度”模型上并没

    作者: HWCloudAI
    发表时间: 2020-12-15 14:55:46
    3574
    0
  • 华为云:加速迈向深度用云,共建全场景智慧金融

    金融数智化转型升级三大关键方向。 分布式基础设施韧性:移动金融应用给用户带来了便捷服务,带动了金融行业高速发展,金融业务需要有极高韧性分布式基础设施,来满足大规模高并发、实时一致业务交易。华为云提供金融级分布式基础设施、分布式容器资源池,以及金融级分布式云调度中心,

  • FPGA设计心得(3)Aurora IP core 理论学习记录

    通过在帧开头添加一个2字节SCP代码组来指示帧开始(SOF)。 帧结尾(EOF)通过在帧末尾添加2字节通道结束协议(ECP)代码组来表示。 只要没有数据,就会插入空闲代码组。 代码组是8B / 10B编码字节对,所有数据都作为代码组发送,因此具有奇数字节用户帧在帧

    作者: 李锐博恩
    发表时间: 2021-07-14 17:42:30
    1486
    0
  • 深度学习进展

    和模型改进、计算能力提升以及数据量增长,深度学习应用范围不断扩大,对各行各业产生了深远影响。 方向一:深度学习基本原理和算法 深度学习是一种机器学习方法,其核心思想是构建多层神经网络模型,通过大量数据训练来学习数据特征表示。深度学习通过反向传播算法来训练神经网络

    作者: ruogu994
    发表时间: 2024-02-18 09:34:20
    25
    0
  • 深度学习之学习算法

    机器学习算法是一种可以从数据中学习算法。然而,我们所谓 “学习”是什么意思呢?Mitchell (1997) 提供了一个简洁定义:“对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量性能有所提升。” 经验

    作者: 小强鼓掌
    944
    0
  • 深度学习之学习率

    学习率可通过试验和误差来选取,通常最好选择方法是监测目标函数值随时间变化学习曲线。与其说是科学,这更像是一门艺术,我们应该谨慎地参考关于这个问题大部分指导。使用线性策略时,需要选择参数为 ϵ0,ϵτ,τ。通常 τ 被设为需要反复遍历训练集几百次迭代次数。通常 ϵτ 应设为大约 ϵ0 1%。主要问题是如何设置

    作者: 小强鼓掌
    454
    2
  • 分享基于立体视觉深度估计深度学习技术研究

    种架构所有方法之间异同。其分析角度包括训练数据集、网络结构设计、它们在重建性能、训练策略和泛化能力上效果。对于一些关键方法,作者使用了公开数据集和私有数据进行总结和比较,采用私有数据目的是测试各类方法在全新场景下泛化性能。这篇论文能够为研究深度立体匹配研究人

    作者: 初学者7000
    580
    2
  • [深度学习]测距

    系列内容深度学习CNN 文章目录 ADAS摄像头成像需具备两大特点单目镜头测距原理双目镜头测距原理 ADAS摄像头成像需具备两大特点 是要看得足够远 看越远就能有更加充裕时间做出判断和反应,从而 避免或者降低事故发生造成损失。 是要求高动态

    作者: 内核笔记
    发表时间: 2021-06-08 15:51:49
    1409
    0