已找到以下 10000 条记录
  • 机器学习与深度学习

    属于机器学习子类。它灵感来源于人类大脑工作方式,是利用深度神经网络来解决特征表达一种学习过程。深度神经网络本身并非是一个全新概念,可理解为包含多个隐含层神经网络结构。为了提高深层神经网络训练效果,人们对神经元连接方法以及激活函数等方面做出了调整。其目的在于建立、模

    作者: QGS
    678
    2
  • 分享深度学习发展混合学习

    模型可以在监督数据最少情况下获得最佳性能。  Gan涉及混合学习其他领域——自我监督学习。在自监督学习中,无监督问题被明确定义为有监督问题。Gans通过引入生成器手动创建监控数据;创建标记用于识别真实/生成图像。在无监督前提下,创建一个有监督任务。此外,考虑使用编码

    作者: 初学者7000
    931
    1
  • AI前沿——深度学习技术

    别。开始通过传感器(例如CMOS)来获得数据。然后经过预处理、特征提取、特征选择,再到推理、预测或者识别。最后一个部分,也就是机器学习部分,绝大部分工作是在这方面做,也存在很多paper和研究。而中间三部分,概括起来就是特征表达。良好特征表达,对最终算法准确性起了

    作者: 运气男孩
    431
    2
  • 深度学习入门》笔记 - 21

    Linear Unit)函数出现和流行时间都比较晚,但却是深度学习常用激活函数。它非常简单: ReLU(x)=max(x,0) 是一个折线函数,所有负输入值都变换成0,所有非负输入值,函数值都等于输入值本身。ReLU函数在正值区域没有梯度消失问题。最后,总结如下:

    作者: 黄生
    29
    1
  • 由线性回归来理解深度学习理论基础(1)

    习)中,学习过程即寻找一个数学方程式,从而使得每一个输入和输出都能够通过这个方程一一对应。在最简单情境下,这个方程是线性。什么是线性关系?线性关系指的是可以用一条直线表示两个变量(x和y)之间关系。许多现象都是线性关系,如双手拉橡皮所使用力量和橡皮被拉伸长度,我们可

    作者: @Wu
    2490
    7
  • 深度学习笔记之贡献

      总之,深度学习是机器学习一种方法。在过去几十年发展中,它大量借鉴了我们关于人脑、统计学和应用数学知识。近年来,得益于更强大计算机、更大数据集和能够训练更深网络技术,深度学习普及性和实用性都有了极大发展。未来几年充满了进一步提高深度学习并将它带到新领域挑战和机遇。

    作者: 小强鼓掌
    856
    2
  • 浅谈深度学习Backbone

    e和head之间,是为了更好利用backbone提取特征。Bottleneck:瓶颈意思,通常指的是网网络输入数据维度和输出维度不同,输出维度比输入小了许多,就像脖子一样,变细了。经常设置参数 bottle_num=256,指的是网络输出数据维度是256 ,

    作者: QGS
    82
    2
  • 深度学习之高阶微分

    标量函数单个二阶导数。相反,我们通常对 Hessian 矩阵性质比较感兴趣。如果我们有函数 f : Rn → R,那么 Hessian矩阵大小是 n × n。在典型深度学习应用中,n 将是模型参数数量,可能很容易达到数十亿。因此,完整 Hessian 矩阵甚至不能表示。典型的深度学习方法是使用

    作者: 小强鼓掌
    517
    0
  • 深度学习之基于梯度学习

    我们到目前为止看到线性模型和神经网络最大区别,在于神经网络非线性导致大多数我们感兴趣损失函数都成为了非凸。这意味着神经网络训练通常使用迭代、基于梯度优化,仅仅使得代价函数达到一个非常小值;而不是像用于训练线性回归模型线性方程求解器,或者用于训练逻辑回归或SVM凸优化算

    作者: 小强鼓掌
    833
    2
  • 深度学习之浅层网络

    更确切说,他们说明分段线性网络(可以通过整流非线性或 maxout 单元获得)可以表示区域数量是网络深度指数级函数。图 6.5 解释了带有绝对值整流网络是如何创建函数镜像图像,这些函数在某些隐藏单元顶部计算,作用于隐藏单元输入。每个隐藏单元指定在哪里折叠输入空

    作者: 小强鼓掌
    423
    0
  • 机器学习以及深度学习

    是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习”一个**子集**, 相比其他学习方法, 使用了更多参数、模型也更复杂, 从而使得模型对数据理解更加深人, 也更加智能。 传统机器学习是分步骤来进行, 每一步最优解不一定带来结果最优解; 另一方面, 手工选取特征是一种费时费力且需要专业知识的方法,

    作者: 黄生
    348
    1
  • 深度学习之稀疏激活

    性能。Glorot et al. (2011a) 说明,在深度整流网络中学习比在激活函数具有曲率或两侧饱和深度网络中学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法发展产生影响。Glorot et al. (2011a) 从生物学考虑整流

    作者: 小强鼓掌
    935
    1
  • 深度学习之稀疏激活

    性能。Glorot et al. (2011a) 说明,在深度整流网络中学习比在激活函数具有曲率或两侧饱和深度网络中学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法发展产生影响。Glorot et al. (2011a) 从生物学考虑整流

    作者: 小强鼓掌
    653
    1
  • 深度学习笔记之特性

            深度学习是通向人工智能途径之一。具体来说,它是机器学习一种,一种能够使计算机系统从经验和数据中得到提高技术。我们坚信机器学习可以构建出在复杂实际环境下运行AI系统,并且是唯一切实可行方法。深度学习是一种特定类型机器学习,具有强大能力和灵活性,它将大千

    作者: 小强鼓掌
    930
    1
  • 深度学习之经验风险

    最有效现代优化算法是基于梯度下降,但是很多有用损失函数,如 0 − 1 损失,没有有效导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化。反之,我们会使用一个稍有不同方法,我们真正优化目标会更加不同于我们希望优化目标。

    作者: 小强鼓掌
    628
    2
  • 机器学习之深度学习简介

    深度学习 1. 深度学习介绍 2. 深度学习原理 3. 深度学习实现 深度学习 1. 深度学习介绍 深度学习(Deep learning)是机器学习一个分支领域,其源于人工 神经网络研究。 深度学习广泛应用在计算机视觉,音频处理,自然语言处理等诸多领 域。 人工神经网络(Artificial

    作者: 南蓬幽
    发表时间: 2022-06-28 07:19:06
    363
    0
  • 深度学习之权重比例

    权重比例推断规则在其他设定下也是精确,包括条件正态输出回归网络以及那些隐藏层不包含非线性深度网络。然而,权重比例推断规则对具有非线性深度模型仅仅是一个近似。虽然这个近似尚未有理论上分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现

    作者: 小强鼓掌
    961
    5
  • 深度学习典型模型

    络受视觉系统结构启发而产生。第一个卷积神经网络计算模型是在Fukushima(D神经认知机中提出,基于神经元之间局部连接和分层组织图像转换,将有相同参数神经元应用于前一层神经网络不同位置,得到一种平移不变神经网络结构形式。后来,Le Cun等人在该思想基础上,用误差

    作者: 某地瓜
    1673
    1
  • 深度学习框架有哪些?

    深度学习框架有哪些?各有什么优势?

    作者: 可爱又积极
    759
    6
  • 深度学习笔记》笔记(二)

    神经网络结构从普通全连接神经网络,发展到卷积神经网络、循环神经网络、自编码器、生成式对抗网络和图神经网络等各种结构, 但BP算法一直是神经网络一个经典和高效寻优工具。附神经网络早期一些发展历程1943年,WarrenMcCulloch和WalterPitts于《神经元与行

    作者: 黄生
    48
    3