已找到以下 10000 条记录
  • 适合新手深度学习综述(4)--深度学习方法

    (2015) 预测了无监督学习在深度学习中未来。Schmidthuber(2014) 也描述了无监督学习神经网络。Deng 和 Yu(2014) 简要介绍了无监督学习深度架构,并详细解释了深度自编码器。4.3 深度强化学习强化学习使用奖惩系统预测学习模型下一步。这主要用于游戏和机

    作者: @Wu
    177
    1
  • 深度学习计算服务平台

    开发者可利用平台数据集训练自己模型,或利用平台中算法框架定制出自己所需功能。平台核心功能主要包括样本库、算法库、模型库、训练平台与推理服务平台。其中样本库是存储和管理各类型样本资源组件,为训练环境提供标注样本,支撑模型训练;算法库是提供开箱可用神经网络算法仓库,模型库

  • 数云融合,深度剖析数字人才战略-828-伙伴专场-快成长直播间-华为云

    快成长 ▪ 云上直播 【828·伙伴专场】数云融合,深度剖析数字人才战略 【828·伙伴专场】数云融合,深度剖析数字人才战略 【828·伙伴专场】数云融合,深度剖析数字人才战略 直播时间:2023/09/011 16:00-17:00 直播时间:2023/09/011 16:00-17:00

  • 浅谈深度学习

    习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习思想:深度神经网络基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层高层次特征来表示数据抽象语义信息,获得更好特征鲁棒性。深度学习应用图像处理领域主要应用图像分类(物体识别):整幅图像分类或识别物

    作者: QGS
    39
    2
  • 深度学习特点

    深度学习区别于传统浅层学习,深度学习不同在于: (1)强调了模型结构深度,通常有5层、6层,甚至10多层隐层节点;(2)明确了特征学习重要性。也就是说,通过逐层特征变换,将样本在原空间特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征方法相比,

    作者: QGS
    667
    2
  • 深度学习简介

    是以有监督学习为基础卷积神经网络结合自编码神经网络进行无监督预训练,进而利用鉴别信息微调网络参数形成卷积深度置信网络。与传统学习方法相比,深度学习方法预设了更多模型参数,因此模型训练难度更大,根据统计学习一般规律知道,模型参数越多,需要参与训练数据量也越大。 20世

    作者: 某地瓜
    1683
    1
  • 认识深度学习

    在接受计算机视觉培训深度学习系统可能会首先学会识别出现在图像中物体边缘。这些信息被传送到下一层,可能会学习识别角落或其他特征。它一遍又一遍地经历同样过程,直到系统最终开发识别物体甚至识别人脸能力。 大多数深度学习系统都依赖于称为深度神经网络(DNN)一种计算机体系结构。

    作者: 建赟
    1845
    2
  • 什么是深度学习

    深度学习是支撑人工智能发展核心技术,云服务则是深度学习主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力一站式平台软件。OMAI平台以支持高性能计算技术和大规模分

    作者: OMAI
    6642
    0
  • 深度学习概念

    这些学习过程中获得信息对诸如文字,图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语音和图像识别方面取得效果,远远超过先前相关技术。 深度学习在搜索技术,数据挖掘,机器

    作者: 某地瓜
    1859
    1
  • 华为云Stack智能进化,三大举措赋能政企深度用云

    急。一批数字化先行者已经行动起来,加速迈向“深度用云”,带来新一轮数字化飞跃。 华为云CEO张平安表示:“深度用云正给行业带来新一轮创新动力。华为云坚持将最新云原生技术、华为自身数字化转型经验和全球伙伴优秀实践在沉淀在云上,面向所有客户开放、随取随用。同时,携手军团和伙

  • 深度学习应用

    计算机视觉香港中文大学多媒体实验室是最早应用深度学习进行计算机视觉研究华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和D

    作者: QGS
    657
    1
  • 深度学习应用

    计算机视觉香港中文大学多媒体实验室是最早应用深度学习进行计算机视觉研究华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和D

    作者: QGS
    1525
    2
  • 浅谈深度学习

    在成为越来越多领域主流技术。然而,深度学习技术也存在一些挑战和问题。例如,深度学习模型训练需要大量数据和计算资源,而且通常需要大量时间和人力来完成。此外,深度学习模型精度和稳定性也需要更多研究和改进。总结总之,深度学习技术是一种非常重要和有影响力机器学习技术。它已经

    作者: 运气男孩
    24
    3
  • 主机深度采集成功,部分采集规格信息缺失 - 迁移中心 MGC

    主机深度采集成功,部分采集规格信息缺失 问题描述 进行主机深度采集后,在资源详情中查看采集基本信息和规格信息,发现存在部分信息缺失情况。 问题分析 出现该问题,可能是在安装MgC Agent(原Edge)主机上Linux采集脚本时,UNIX换行符格式不正确。正常情况下,Li

  • 深度学习前景

    为众所周知深度学习’’。这个领域已经更换了很多名称,它反映了不同研究人员和不同观点影响。全面地讲述深度学习历史超出了本书范围。然而,一些基本背景对理解深度学习是有用。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习雏形出现在控

    作者: G-washington
    1665
    1
  • 浅谈深度学习

    首先要明白什么是深度学习?深度学习是用于建立、模拟人脑进行分析学习神经网络,并模仿人脑机制来解释数据一种机器学习技术。它基本特点是试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中“神经网络”

    作者: 运气男孩
    1268
    3
  • 深度学习概念

    Intelligence)。深度学习是学习样本数据内在规律和表示层次,这些学习过程中获得信息对诸如文字、图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语言和图像识别方面取得效果,远远超过先前

    作者: QGS
    973
    3
  • 适合新手深度学习综述(5)--深度神经网络

    (CapsNet),即一个包含两个卷积层和一个全连接层架构。CapsNet 通常包含多个卷积层,胶囊层位于末端。CapsNet 被认为是深度学习最新突破之一,因为据说这是基于卷积神经网络局限性而提出。它使用是一层又一层胶囊,而不是神经元。激活较低级胶囊做出预测,在同意多个预测后,更高级胶囊变得活跃。在

    作者: @Wu
    179
    1
  • 深度学习VGG网络

    VGG原理VGG16相比AlexNet一个改进是采用连续几个3x3卷积核代替AlexNet中较大卷积核(11x11,7x7,5x5)。对于给定感受野(与输出有关输入图片局部大小),采用堆积小卷积核是优于采用大卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂模式,而且代价还比

    作者: 我的老天鹅
    579
    16
  • 深度学习释义

    深度学习是机器学习一种,而机器学习是实现人工智能必经路径。深度学习概念源于人工神经网络研究,含多个隐藏层多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象高层表示属性类别或特征,以发现数据分布式特征表示。研究深度学习动机在于建立模拟人脑进行分析学

    作者: 某地瓜
    1961
    1