已找到以下 10000 条记录
  • 图像视频压缩:深度学习,有一套

    为量化器;GG 为解码和生成器;DD 为对抗器。 基于深度学习视频压缩编码 基于深度学习视频编码分为两种: • 采用深度学习替代传统视频编码中部分模块 • 端到端采用深度学习编码压缩 部分方案 采样深度神经网络可以替代传统视频编码中模块包括:帧内/帧间预测、变换、上下采样、环路滤波、熵编码等6。

    作者: 技术火炬手
    发表时间: 2021-03-23 06:28:07
    7893
    0
  • 华为云:加速迈向深度用云,共建全场景智慧金融

    金融数智化转型升级三大关键方向。 分布式基础设施韧性:移动金融应用给用户带来了便捷服务,带动了金融行业高速发展,金融业务需要有极高韧性分布式基础设施,来满足大规模高并发、实时一致业务交易。华为云提供金融级分布式基础设施、分布式容器资源池,以及金融级分布式云调度中心,

  • 创建和训练模型 - CodeArts IDE Online

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • 深度学习之深度前馈网络

    个神经元,它接收输入来源于许多其他单元,并且计算它自己激活值。使用多层向量值表示想法来源于神经科学。用于计算这些表示函数 f(i)(x) 选择,也或多或少地受到神经科学观测指引,这些观测是关于生物神经元计算功能。然而,现代神经网络研究受到更多是来自许多数学和工

    作者: 小强鼓掌
    1256
    4
  • Istio数据面架构(Envoy)深度解析

    界生态有较深入理解 Jimmy Zhang 华为云云原生网络架构师 华为云云原生网络架构师,负责云原生容器网络架构设计与开发 个人简介: 华为云云原生网络架构师负责云原生容器网络架构设计与开发,在VPC网络架构、网络安全、应用性能监控、网络运维等领域有丰富工作经验和深入技术理解。

  • 适合新手深度学习综述(4)--深度学习方法

    (2015) 预测了无监督学习在深度学习中未来。Schmidthuber(2014) 也描述了无监督学习神经网络。Deng 和 Yu(2014) 简要介绍了无监督学习深度架构,并详细解释了深度自编码器。4.3 深度强化学习强化学习使用奖惩系统预测学习模型下一步。这主要用于游戏和机

    作者: @Wu
    176
    1
  • 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知

    版本支持更多高级特性,在推理部署上支持在线推理、批量推理和端侧推理,能力比深度学习服务推理特性更加强大,需要继续使用推理功能,请申请ModelArts推理部署能力。 如您有任何问题,欢迎您拨打华为云服务热线:4000-955-988与我们联系。 感谢您对华为云支持!

  • 适合新手深度学习综述(6)--深度生成模型

    等及其变体。Goodfellow 等人 (2016) 详细解释了深度生成模型,如受限和非受限玻尔兹曼机及其变种、深度玻尔兹曼机、深度信念网络 (DBN)、定向生成网络和生成随机网络等。Maaløe 等人(2016)提出了辅助深层生成模型(Auxiliary Deep Generative

    作者: @Wu
    154
    1
  • 深度学习笔记之度量模型深度方式(一)

    第一个观点是基于评估架构所需执行顺序指令数目。假设我们将模型表示为给定输入后,计算对应输出流程图,则可以将这张流程图中最长路径视为模型深度。正如两个使用不同语言编写等价程序将具有不同长度;相同函数可以被绘制为具有不同深度流程图,其深度取决于我们可以用来作为一个步骤函数。图1.3

    作者: 小强鼓掌
    740
    1
  • 深度学习挑战

    其擅长深度学习所需计算类型。在过去,这种水平硬件对于大多数组织来说成本费用太高。然而,基于云计算机器学习服务增长意味着组织可以在没有高昂前期基础设施成本情况下访问具有深度学习功能系统。 •数据挑战:深度学习也会受到妨碍其他大数据项目的数据质量和数据治理挑战阻碍。用

    作者: 建赟
    1652
    2
  • 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知

    华为云在此提醒您,产品退市后,深度学习服务不可用,为了避免影响您业务,建议您在2019/5/29 23:59:59前做好迁移数据及数据备份。 同时,华为云一站式AI开发平台ModelArts已经商用,ModelArts是深度学习服务新一代架构版本支持更多高级特性,不仅仅全部包含深度学习服务功能,还

  • 浅谈深度学习

    在成为越来越多领域主流技术。然而,深度学习技术也存在一些挑战和问题。例如,深度学习模型训练需要大量数据和计算资源,而且通常需要大量时间和人力来完成。此外,深度学习模型精度和稳定性也需要更多研究和改进。总结总之,深度学习技术是一种非常重要和有影响力机器学习技术。它已经

    作者: 运气男孩
    23
    3
  • 什么是深度学习

    何得到输出流程图中最长路径长度记为模型深度。另一方面,在深度概率模型中,也把描述概念之间如何相互关联深度而非计算图深度记为一种模型深度。值得注意是,后者用来计算表示计算图可能比概念图要深得多。鉴于这两种观点共存,一般在一个模型有多深才算作“深度”模型上并没

    作者: 角动量
    1546
    5
  • 深度学习前景

    为众所周知深度学习’’。这个领域已经更换了很多名称,它反映了不同研究人员和不同观点影响。全面地讲述深度学习历史超出了本书范围。然而,一些基本背景对理解深度学习是有用。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习雏形出现在控

    作者: G-washington
    1664
    1
  • 浅谈深度学习

    首先要明白什么是深度学习?深度学习是用于建立、模拟人脑进行分析学习神经网络,并模仿人脑机制来解释数据一种机器学习技术。它基本特点是试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中“神经网络”

    作者: 运气男孩
    1268
    3
  • 深度学习概念

    Intelligence)。深度学习是学习样本数据内在规律和表示层次,这些学习过程中获得信息对诸如文字、图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语言和图像识别方面取得效果,远远超过先前

    作者: QGS
    973
    3
  • 浅谈深度学习

    习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习思想:深度神经网络基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层高层次特征来表示数据抽象语义信息,获得更好特征鲁棒性。深度学习应用图像处理领域主要应用图像分类(物体识别):整幅图像分类或识别物

    作者: QGS
    38
    2
  • 深度学习简介

    是以有监督学习为基础卷积神经网络结合自编码神经网络进行无监督预训练,进而利用鉴别信息微调网络参数形成卷积深度置信网络。与传统学习方法相比,深度学习方法预设了更多模型参数,因此模型训练难度更大,根据统计学习一般规律知道,模型参数越多,需要参与训练数据量也越大。 20世

    作者: 某地瓜
    1681
    1
  • 认识深度学习

    在接受计算机视觉培训深度学习系统可能会首先学会识别出现在图像中物体边缘。这些信息被传送到下一层,可能会学习识别角落或其他特征。它一遍又一遍地经历同样过程,直到系统最终开发识别物体甚至识别人脸能力。 大多数深度学习系统都依赖于称为深度神经网络(DNN)一种计算机体系结构。

    作者: 建赟
    1845
    2
  • 什么是深度学习

    深度学习是支撑人工智能发展核心技术,云服务则是深度学习主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力一站式平台软件。OMAI平台以支持高性能计算技术和大规模分

    作者: OMAI
    6640
    0