内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之权重比例

    权重比例推断规则在其他设定下也是精确,包括条件正态输出回归网络以及那些隐藏层不包含非线性深度网络。然而,权重比例推断规则对具有非线性深度模型仅仅是一个近似。虽然这个近似尚未有理论上分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现

    作者: 小强鼓掌
    952
    2
  • 深度学习笔记之理解

    我们今天知道一些最早学习算法,是旨在模拟生物学习计算模型,即大脑怎样学习或为什么能学习模型。其结果是深度学习以人工神经网络 (artificial neural network, ANN) 之名而淡去。彼时,深度学习模型被认为是受生物大脑(无论人类大脑或其他动物大脑)所启发

    作者: 小强鼓掌
    826
    2
  • 深度学习入门》笔记 - 26

    欠拟合、过拟合总结如下:接下来是TensorFlow框架部分,之前有个帖子 基于TensorFlow 2建立深度学习模型 - 快速入门 cid:link_0然后会使用它来建立线性回归模型神经网络分类模型敬请期待

    作者: 黄生
    49
    2
  • 深度学习学习路线

    实战项目 深度学习是一门实践性很强学科,需要通过实战项目来加深对理论知识理解应用。可以选择一些开源深度学习项目进行学习实践,如ImageNet、CIFAR-10等。 2.比赛竞赛 参加深度学习相关比赛竞赛,可以锻炼自己深度学习能力实战经验,也可以与其他深度学习爱好者

    作者: 赵KK日常技术记录
    发表时间: 2023-06-24 17:11:50
    5
    0
  • 深度学习入门》笔记 - 14

    27647116229.png) 观察箭头方向,代表了处理流程。通过线性回归模型生物神经元类比,可以将线性模型称作一个只包含一个神经元神经网络。 同样,logistic模型也可以用来进行类比,下图代表就是预估y等于1概率处理过程: ![image.png](https://bbs-img

    作者: 黄生
    60
    2
  • 深度学习入门》笔记 - 07

    也叫做目标函数或者损失函数,它值叫做预测误差或者模型误差。求它最小值方法有很多,最常见方法是`求偏导数`,然后令这些偏导数等于零,解方程得到bw估计值。但是这个方法只适合少数结构比较简单模型(比如线性回归模型),不能求解深度学习这类复杂模型参数。 所以下面介绍深度学习中常用优化算法:`梯度下降法`

    作者: 黄生
    156
    2
  • 深度学习特征提取

    传统机器学习需要人工提取数据特征,而深度学习通过层次化表示来完成特征提取。层次化表示是指用简单表示逐步表达较复杂表示。1. 如何理解简单复杂表示? 2. 这种所谓层次化表示理论依据是什么?

    作者: RabbitCloud
    1163
    3
  • 深度学习之平滑先验

    别任务中统计挑战。本书中,我们将介绍深度学习如何引入额外(显示隐式)先验去降低复杂任务中泛化误差。这里,我们解释为什么单是平滑先验不足以应对这类任务。有许多不同方法来隐式地或显式地表示学习函数应该是光滑或局部不变先验。所有这些不同方法都旨在鼓励学习过程能够学习出函数

    作者: 小强鼓掌
    1195
    1
  • 深度学习入门》笔记 - 21

    Linear Unit)函数出现流行时间都比较晚,但却是深度学习常用激活函数。它非常简单: ReLU(x)=max(x,0) 是一个折线函数,所有负输入值都变换成0,所有非负输入值,函数值都等于输入值本身。ReLU函数在正值区域没有梯度消失问题。最后,总结如下:

    作者: 黄生
    29
    1
  • AI前沿——深度学习技术

    别。开始通过传感器(例如CMOS)来获得数据。然后经过预处理、特征提取、特征选择,再到推理、预测或者识别。最后一个部分,也就是机器学习部分,绝大部分工作是在这方面做,也存在很多paper研究。而中间三部分,概括起来就是特征表达。良好特征表达,对最终算法准确性起了

    作者: 运气男孩
    431
    2
  • 深度学习替代职业

    科技公司通过基于GAN深度学习开发了一种名为“自动全身模型生成人工智能”技术,他们完全是由人工智能虚拟而成,时尚品牌或广告代理商因而可以不用支付模特酬劳,也不用负担拍摄相关的人员、场地、灯光、设备、甚至是餐饮等成本,这意味着人工智能已经完全可以取代人类模特拍摄时尚宣传广告了。

    作者: 初学者7000
    959
    5
  • 深度学习历史

    Some sources point out that Frank Rosenblatt developed and explored all of the basic ingredients of the deep learning systems of today

    作者: liupanccsu
    发表时间: 2022-08-04 01:52:38
    166
    0
  • 华为云深度学习

    全托管基于容器serverless服务,您无需关心升级与维护,安心搞业务简单易用预置多种网络模型、向导式开发界面、一键开启模型训练与部署开发工作量少自研MoXing分布式框架,让您分布式训练代码开发量缩短近10倍训练速度快1000块GPU集群0.8线性加速比,原先一个月模型训练

    作者: 斑馬斑馬
    331
    0
  • 浅谈深度学习Backbone

    bonehead之间,是为了更好利用backbone提取特征。Bottleneck:瓶颈意思,通常指的是网网络输入数据维度输出维度不同,输出维度比输入小了许多,就像脖子一样,变细了。经常设置参数 bottle_num=256,指的是网络输出数据维度是256

    作者: QGS
    82
    2
  • 深度学习之正则化

    试集上表现。有时侯,这些约束惩罚被设计为编码特定类型先验知识;其他时候,这些约束惩罚被设计为偏好简单模型,以便提高泛化能力。有时,惩罚和约束对于确定欠定问题是必要。其他形式正则化(如集成方法)结合多个假说来解释训练数据。

    作者: 小强鼓掌
    527
    0
  • 深度学习框架MindSpore介绍

    原生表达。资深深度学习开发者都体会过手动求解过程,不仅求导过程复杂,结果还很容易出错。所以现有深度学习框架,都有自动微分特性,帮助开发者利用自动微分技术实现自动求导,解决这个复杂、关键过程。深度学习框架自动微分技术根据实现原理不同,分为以GoogleTensorFl

    作者: 运气男孩
    885
    2
  • 深度学习训练过程

    法分为醒( wake)睡(sleep)两个部分。wake阶段:认知过程,通过外界特征向上权重产生每一层抽象表示,并且使用梯度下降修改层间下行权重。sleep阶段:生成过程,通过顶层表示向下权重,生成底层状态,同时修改层间向上权重。自下上升非监督学习就是从底层开

    作者: QGS
    1054
    3
  • 深度学习之经验E

    是统计学家和机器学习研究者使用很久数据集。它是 150 个鸢尾花卉植物不同部分测量结果集合。每个单独植物对应一个样本。每个样本特征是该植物不同部分测量结果:萼片长度,萼片宽度,花瓣长度花瓣宽度。这个数据集记录了每个植物属于什么品种,其**有三个不同品种。无监督学习算法 (unsupervised

    作者: 小强鼓掌
    1164
    3
  • 深度学习之经验E

    是统计学家和机器学习研究者使用很久数据集。它是150 个鸢尾花卉植物不同部分测量结果集合。每个单独植物对应一个样本。每个样本特征是该植物不同部分测量结果:萼片长度,萼片宽度,花瓣长度花瓣宽度。这个数据集记录了每个植物属于什么品种,其**有三个不同品种。        无监督学习算法(unsupervised

    作者: 小强鼓掌
    1060
    4
  • 机器学习与深度学习比较

    器。因此,深度学习要求包括GPU。这是它工作中不可或缺一部分。它们还进行大量矩阵乘法运算。特色工程这是一个普遍过程。在此,领域知识被用于创建特征提取器,以降低数据复杂性,并使模式更加可见以学习算法工作。虽然,处理起来非常困难。因此,这是需要非常多专业知识时间。解决问

    作者: @Wu
    541
    1