检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
27647116229.png) 观察箭头的方向,代表了处理的流程。通过线性回归模型和生物神经元的类比,可以将线性模型称作一个只包含一个神经元的神经网络。 同样的,logistic模型也可以用来进行类比,下图代表的就是预估y等于1的概率的处理过程: ![image.png](https://bbs-img
[8]。传统上,用在概率分布估计和生成模型上的统计方法更多地关注于找寻正确的概率分布,以及正确的采样算法。生成对抗网络的关键创新在于将采样部分替换成了任意的含有可微分参数的算法。这些参数将被训练到使辨别器不能再分辨真实的和生成的样本。生成对抗网络可使用任意算法来生成输出的这一特性为许多技巧打开了新的大门。例如生成奔跑的斑马
也叫做目标函数或者损失函数,它值叫做预测误差或者模型误差。求它的最小值的方法有很多,最常见的方法是`求偏导数`,然后令这些偏导数等于零,解方程得到b和w的估计值。但是这个方法只适合少数结构比较简单的模型(比如线性回归模型),不能求解深度学习这类复杂模型的参数。 所以下面介绍的是深度学习中常用的优化算法:`梯度下降法`
别任务中的统计挑战。本书中,我们将介绍深度学习如何引入额外的(显示的和隐式的)先验去降低复杂任务中的泛化误差。这里,我们解释为什么单是平滑先验不足以应对这类任务。有许多不同的方法来隐式地或显式地表示学习函数应该是光滑或局部不变的先验。所有这些不同的方法都旨在鼓励学习过程能够学习出函数
科技公司通过基于GAN的深度学习开发了一种名为“自动全身模型生成人工智能”的技术,他们完全是由人工智能虚拟而成,时尚品牌或广告代理商因而可以不用支付模特酬劳,也不用负担拍摄相关的人员、场地、灯光、设备、甚至是餐饮等成本,这意味着人工智能已经完全可以取代人类模特拍摄时尚宣传广告了。
全托管基于容器的serverless服务,您无需关心升级与维护,安心搞业务简单易用预置多种网络模型、向导式开发界面、一键开启模型训练与部署开发工作量少自研MoXing分布式框架,让您的分布式训练代码开发量缩短近10倍训练速度快1000块GPU集群和0.8的线性加速比,原先一个月的模型训练
等。我们期待深度学习未来能够出现在越来越多的科学领域中。 总之,深度学习是机器学习的一种方法。在过去几十年的发展中,它大量借鉴了我们关于人脑、统计学和应用数学的知识。近年来,得益于更强大的计算机、更大的数据集和能够训练更深网络的技术,深度学习的普及性和实用性都有了极大的发展。
求极小值的过程就是反向传播算法。在进行DNN反向传播算法前,需要选择一个损失函数,来度量训练样本计算出的输出和真实的训练样本输出之间的损失。这里选用最常见的均方差来度量损失。即对于每个样本,期望最小化:和y均为向量,而为S的L2范数。那么便可以用梯度下降法迭代求解每一层的W,b啦
原生表达。资深的深度学习开发者都体会过手动求解的过程,不仅求导过程复杂,结果还很容易出错。所以现有深度学习框架,都有自动微分的特性,帮助开发者利用自动微分技术实现自动求导,解决这个复杂、关键的过程。深度学习框架的自动微分技术根据实现原理的不同,分为以Google的TensorFl
法分为醒( wake)和睡(sleep)两个部分。wake阶段:认知过程,通过外界的特征和向上的权重产生每一层的抽象表示,并且使用梯度下降修改层间的下行权重。sleep阶段:生成过程,通过顶层表示和向下权重,生成底层的状态,同时修改层间向上的权重。自下上升的非监督学习就是从底层开
更确切的说,他们说明分段线性网络(可以通过整流非线性或 maxout 单元获得)可以表示区域的数量是网络深度的指数级的函数。图 6.5 解释了带有绝对值整流的网络是如何创建函数的镜像图像的,这些函数在某些隐藏单元的顶部计算,作用于隐藏单元的输入。每个隐藏单元指定在哪里折叠输入空
是统计学家和机器学习研究者使用很久的数据集。它是 150 个鸢尾花卉植物不同部分测量结果的集合。每个单独的植物对应一个样本。每个样本的特征是该植物不同部分的测量结果:萼片长度,萼片宽度,花瓣长度和花瓣宽度。这个数据集记录了每个植物属于什么品种,其**有三个不同的品种。无监督学习算法 (unsupervised
助理解深度学习的基本概念和算法。作者使用简单的例子来显示深度学习算法的工作原理。通过这些例子一步一步组合来逐渐介绍算法更复杂的部分。这本书适合的读者面很广,从计算机初学者,到数据科学专家,到希望使用简单的方式向学生解释深度学习的教师。本书的组织架构。首先学习人工神经网络的基础知识
深度学习是通向人工智能的途径之一。具体来说,它是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。我们坚信机器学习可以构建出在复杂实际环境下运行的AI系统,并且是唯一切实可行的方法。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千
数的性能。Glorot et al. (2011a) 说明,在深度整流网络中的学习比在激活函数具有曲率或两侧饱和的深度网络中的学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法的发展产生影响。Glorot et al. (2011a) 从生物学考虑整流
数的性能。Glorot et al. (2011a) 说明,在深度整流网络中的学习比在激活函数具有曲率或两侧饱和的深度网络中的学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法的发展产生影响。Glorot et al. (2011a) 从生物学考虑整流
2 传统机器学习与深度学习的对比传统机器学习与深度学习在理论与应用上都存在差异,下面将分别从数据依赖、硬件支持、特征工程、问题解决方案、执行时间以及可解释性这六个方面对传统机器学习与深度学习的差别进行比较。数据依赖:深度学习和传统机器学习最重要的区别是前者的性能随着数据量的增加而增强。
深度强化学习是人工智能最有趣的分支之一。它是人工智能社区许多显着成就的基石,它在棋盘、视频游戏、自动驾驶、机器人硬件设计等领域击败了人类冠军。深度强化学习利用深度神经网络的学习能力,可以解决对于经典强化学习(RL)技术来说过于复杂的问题。深度强化学习比机器学习的其他分支要复杂得多
权重比例推断规则在其他设定下也是精确的,包括条件正态输出的回归网络以及那些隐藏层不包含非线性的深度网络。然而,权重比例推断规则对具有非线性的深度模型仅仅是一个近似。虽然这个近似尚未有理论上的分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现
降就是一个经典的例子。MLP(深度学习)是一个高度参数化的模型。对于等式y = mx + c,m和c被称为参数,我们从数据和中推导出参数的值。方程的参数可以看作自由度,线性回归具有相对较少的参数,即具有较小的自由度。然而,更复杂的MLP具有更多的参数,也具有更大的自由度。虽然两者