内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习LSTM模型

    长短期记忆(Long short-term memory, LSTM)是一种特殊RNN,主要是为了解决长序列训练过程中梯度消失和梯度爆炸问题。简单来说,就是相比普通RNN,LSTM能够在更长序列中有更好表现。

    作者: 我的老天鹅
    1890
    10
  • 矩阵向量相乘“深度学习”笔记

    矩阵向量相乘矩阵乘法是矩阵运算中最重要操作之一。两个矩阵AB矩阵相乘是第三个矩阵C。为了使乘法可被定义,矩阵A列数必须矩阵B行数相等。如果矩阵A形状是m x n,矩阵B形状是n x p,那么矩阵C形状是m x p。我们可以通过将两个或多个矩阵并列放置以书写矩阵乘法,列如

    作者: QGS
    731
    2
  • 深度学习之悬崖梯度爆炸

    多层神经网络通常存在像悬崖一样斜率较大区域,如图8.3所示。这是由于几个较大权重相乘导致。遇到斜率极大悬崖结构时,梯度更新会很大程度地改变参数值,通常会完全跳过这类悬崖结构。不管我们是从上还是从下接近悬崖,情况都很糟糕,但幸运是我们可以用使用介绍启发式梯度截断(gradient

    作者: 小强鼓掌
    445
    2
  • 深度学习之上溢下溢

    (underflow)。当接近零数被四舍五入为零时发生下溢。许多函数在其参数为零而不是一个很小正数时才会表现出质不同。例如,我们通常要避免被零除(一些软件环境将在这种情况下抛出异常,有些会返回一个非数字 (not-a-number) 占位符)或避免取零对数(这通常被视为 −∞,进一步算术运算

    作者: 小强鼓掌
    1051
    4
  • 深度学习之学习率

    一个相当高代价值。通常,就总训练时间最终代价值而言,最优初始学习率效果会好于大约迭代 100 次左右后最佳效果。因此,通常最好是检测最早几轮迭代,选择一个比在效果上表现最佳学习率更大学习率,但又不能太大导致严重震荡。

    作者: 小强鼓掌
    452
    2
  • 深度学习之学习算法

    经验 E,任务 T 性能度量 P 定义范围非常宽广,我们中提供直观解释示例来介绍不同任务、性能度量经验,这些将被用来构建机器学习算法。

    作者: 小强鼓掌
    944
    0
  • 分享基于立体视觉深度估计深度学习技术研究

    种架构所有方法之间异同。其分析角度包括训练数据集、网络结构设计、它们在重建性能、训练策略泛化能力上效果。对于一些关键方法,作者还使用了公开数据集私有数据进行总结比较,采用私有数据目的是测试各类方法在全新场景下泛化性能。这篇论文能够为研究深度立体匹配研究人

    作者: 初学者7000
    579
    2
  • 深度学习已经取得进展

    历史上非常困难领域:接近人类水平图像分类接近人类水平语音识别接近人类水平手写文字转录更好机器翻译更好文本到语音转换数字助理接近人类水平自动驾驶更好广告定向投放更好网络搜索结果能够回答用自然语言提出问题在围棋上战胜人类我们仍然在探索深度学习能力边界。我们已经开

    作者: ypr189
    827
    1
  • PyTorch深度学习技术生态

    PyTorch将深度学习与3D进行结合研究框架。3D数据比2D图像更为复杂,在处理诸如Mesh R-CNNC3DPO之类项目时,需要用3D数据进行表示,在批处理速度方面的诸多挑战。 PyTorch3D开发出许多用于3D深度学习有用运算符抽象,并希望与社区共享以推动这

    作者: 可爱又积极
    1286
    0
  • 深度学习学习路线

    实战项目 深度学习是一门实践性很强学科,需要通过实战项目来加深对理论知识理解应用。可以选择一些开源深度学习项目进行学习实践,如ImageNet、CIFAR-10等。 2.比赛竞赛 参加深度学习相关比赛竞赛,可以锻炼自己深度学习能力实战经验,也可以与其他深度学习爱好者

    作者: 赵KK日常技术记录
    发表时间: 2023-06-24 17:11:50
    5
    0
  • 【转载】深度学习与人脑

    深度学习是机器学习一个子集,它通过接收大量数据并试图从中学习来模拟人脑。在IBM对该术语定义中,深度学习使系统能够“聚集数据,并以令人难以置信准确性做出预测。” 然而,尽管深度学习令人难以置信,但IBM尖锐地指出,它无法触及人脑处理学习信息能力。深度学习 DNN(深度

    作者: 乔天伊
    18
    3
  • 深度学习中Normalization模型

    很快被作为深度学习标准工具应用在了各种场合。BN**虽然好,但是也存在一些局限问题,诸如当BatchSize太小时效果不佳、对RNN等**络无法有效应用BN等。针对BN问题,最近两年又陆续有基于BN思想很多改进Normalization模型被提出。BN是深度学习进展中里

    作者: 可爱又积极
    840
    3
  • 深度学习之浅层网络

    更确切说,他们说明分段线性网络(可以通过整流非线性或 maxout 单元获得)可以表示区域数量是网络深度指数级函数。图 6.5 解释了带有绝对值整流网络是如何创建函数镜像图像,这些函数在某些隐藏单元顶部计算,作用于隐藏单元输入。每个隐藏单元指定在哪里折叠输入空

    作者: 小强鼓掌
    840
    1
  • 深度学习历史

    Some sources point out that Frank Rosenblatt developed and explored all of the basic ingredients of the deep learning systems of today

    作者: liupanccsu
    发表时间: 2022-08-04 01:52:38
    166
    0
  • 深度学习笔记之理解

    我们今天知道一些最早学习算法,是旨在模拟生物学习计算模型,即大脑怎样学习或为什么能学习模型。其结果是深度学习以人工神经网络 (artificial neural network, ANN) 之名而淡去。彼时,深度学习模型被认为是受生物大脑(无论人类大脑或其他动物大脑)所启发

    作者: 小强鼓掌
    826
    2
  • 深度学习之维数灾难

    处单位体积内训练样本数目除以训练样本总数。如果我们希望对一个样本进行分类,我们可以返回相同网格中训练样本最多类别。如果我们是做回归分析,我们可以平均该网格中样本对应目标值。但是,如果该网格中没有样本,该怎么办呢?因为在高维空间中参数配置数目远大于样本数目,大部分配置没有相关样本。我

    作者: 小强鼓掌
    747
    1
  • 深度学习入门》笔记 - 14

    27647116229.png) 观察箭头方向,代表了处理流程。通过线性回归模型生物神经元类比,可以将线性模型称作一个只包含一个神经元神经网络。 同样,logistic模型也可以用来进行类比,下图代表就是预估y等于1概率处理过程: ![image.png](https://bbs-img

    作者: 黄生
    59
    2
  • 深度学习入门》笔记 - 07

    也叫做目标函数或者损失函数,它值叫做预测误差或者模型误差。求它最小值方法有很多,最常见方法是`求偏导数`,然后令这些偏导数等于零,解方程得到bw估计值。但是这个方法只适合少数结构比较简单模型(比如线性回归模型),不能求解深度学习这类复杂模型参数。 所以下面介绍深度学习中常用优化算法:`梯度下降法`

    作者: 黄生
    155
    2
  • 深度学习之平滑先验

    别任务中统计挑战。本书中,我们将介绍深度学习如何引入额外(显示隐式)先验去降低复杂任务中泛化误差。这里,我们解释为什么单是平滑先验不足以应对这类任务。有许多不同方法来隐式地或显式地表示学习函数应该是光滑或局部不变先验。所有这些不同方法都旨在鼓励学习过程能够学习出函数

    作者: 小强鼓掌
    1194
    1
  • 深度学习替代职业

    科技公司通过基于GAN深度学习开发了一种名为“自动全身模型生成人工智能”技术,他们完全是由人工智能虚拟而成,时尚品牌或广告代理商因而可以不用支付模特酬劳,也不用负担拍摄相关的人员、场地、灯光、设备、甚至是餐饮等成本,这意味着人工智能已经完全可以取代人类模特拍摄时尚宣传广告了。

    作者: 初学者7000
    959
    5