已找到以下 10000 条记录
  • 深度学习模型结构

    对信息处理是分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks

    作者: QGS
    646
    2
  • 分享深度学习算法

    种架构所有方法之间异同。其分析角度包括训练数据集、网络结构设计、它们在重建性能、训练策略泛化能力上效果。对于一些关键方法,作者还使用了公开数据集私有数据进行总结比较,采用私有数据目的是测试各类方法在全新场景下泛化性能。这篇论文能够为研究深度立体匹配研究人

    作者: 初学者7000
    953
    3
  • 深度学习在环保

    年,短短六年时间里,深度学习所需计算量增长了 300,000%。然而,与开发算法相关能耗碳排放量却鲜有被测量,尽管已有许多研究清楚地证明了这个日益严峻问题。 针对这一问题,哥本哈根大学计算机科学系两名学生,协同助理教授 一起开发了一个软件程序,它可以计算预测训练深

    作者: 初学者7000
    839
    2
  • 深度学习现实应用

    重要成果就是词向量学习。词向量可以看作是一种运用深度神经网络将词转换成隐含空间中一个向量化位置表示方法。将词向量作为循环神经网络输入,能有效利用合成式向量语法对句子短语进行解析。合成式向量语法可以被认为是由循环神经网络实施上下文无关概率语法。另一方面,以长短期

    作者: 角动量
    2054
    4
  • 深度学习介绍

    建更复杂模型。通过大量数据训练自动得到模型,不需要人工设计特征提取环节。 深度学习算法试图从数据中学习高级功能,这是深度学习一个非常独特部分。因此,减少了为每个问题开发新特征提取器任务。适合用在难提取特征图像、语音、自然语言领域 1.1.2 深度学习应用场景

    作者: Lansonli
    发表时间: 2021-09-28 15:18:45
    1023
    0
  • 迁移失败,提示“SMS.0204 权限不够” - 主机迁移服务 SMS

    迁移失败,提示“SMS.0204 权限不够” 问题描述 迁移过程中,提示“SMS.0204权限不够,请添加相应细粒度权限”。 解决方案 请参考配置权限,配置细粒度权限。 父主题: 常见问题

  • 深度学习模型结构

    对信息处理是分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks

    作者: 运气男孩
    1146
    2
  • 深度学习特点

    更能够刻画数据丰富内在信息。 [4] 通过设计建立适量神经元计算节点多层运算层次结构,选择合适输人层输出层,通过网络学习调优,建立起从输入到输出函数关系,虽然不能100%找到输入与输出函数关系,但是可以尽可能逼近现实关联关系。使用训练成功网络模型,就可以实现我们对复杂事务处理的自动化要求。 

    作者: QGS
    594
    2
  • 分享深度学习笔记

    深度学习领域,特别是在NLP(最令人兴奋深度学习研究领域)中,该模型规模正在扩大。最新gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习未来会更大吗?通常情况下,gpt-3是非常有说服力,但它在过去一再表明,“成功

    作者: 初学者7000
    636
    1
  • 动手学深度学习:优化与深度学习关系

    令目标函数相反数为新目标函数即可。7.1.1 优化与深度学习关系虽然优化为深度学习提供了最小化损失函数方法,但本质上,优化与深度学习目标是有区别的。在3.11节中,我们区分了训练误差泛化误差。由于优化算法目标函数通常是一个基于训练数据集损失函数,优化目标在于降低

    作者: 且听风吟
    发表时间: 2019-09-04 09:40:07
    6962
    0
  • 《Keras深度学习实战》—2.4 MNIST数据集

    gz这些文件中数据以IDX格式存储。IDX文件格式是用于存储向量与多维度矩阵文件格式,你可以在http://www.fon.hum.uva.nl/praat/manual/IDX_file_format.html上找到IDX格式更多信息。 上图显示了MNIST数据集表示图像。怎么做使用keras

    作者: 华章计算机
    发表时间: 2019-06-15 12:20:24
    7582
    0
  • 什么是深度学习《深度学习与Mindspore实践》今天你读书了吗?

    何得到输出流程图中最长路径长度记为模型深度。另一方面,在深度概率模型中,也把描述概念之间如何相互关联深度而非计算图深度记为一种模型深度。值得注意是,后者用来计算表示计算图可能比概念图要深得多。鉴于这两种观点共存,一般在一个模型有多深才算作“深度”模型上并没

    作者: QGS
    946
    0
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习模型,但是训练好深度学习模型是怎么部署

    作者: 初学者7000
    876
    3
  • 深度学习VGG网络

    VGG原理VGG16相比AlexNet一个改进是采用连续几个3x3卷积核代替AlexNet中较大卷积核(11x11,7x7,5x5)。对于给定感受野(与输出有关输入图片局部大小),采用堆积小卷积核是优于采用大卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂模式,而且代价还比

    作者: 我的老天鹅
    579
    16
  • 深度学习之过拟合

    然而,经验风险最小化很容易导致过拟合。高容量模型会简单地记住训练集。在很多情况下,经验风险最小化并非真的可行。最有效现代优化算法是基于梯度下降,但是很多有用损失函数,如 0 − 1 损失,没有有效导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小

    作者: 小强鼓掌
    335
    1
  • 分布式理论学习一:微服务

    将应用程序不同功能单元(称为服务)进行拆分,并通过这些服务之间定义良好接口和协议联系起来。接口是采用中立方式进行定义,它应该独立于实现服务硬件平台、操作系统编程语言。这使得构建在各种各样系统中服务可以以一种统一通用方式进行交互。 微服务即是SOA演进架构,但是SOA不绑定实际的技术

    作者: 仙士可
    发表时间: 2023-06-26 17:12:48
    17
    0
  • 根据 DNA 序列预测「NGS测序深度深度学习模型

    序列预测「NGS测序深度深度学习模型一种可以根据 DNA 序列预测「NGS测序深度深度学习模型 莱斯大学研究人员设计了一个深度学习模型,该模型可以根据DNA序列,预测Next-Generation Sequencing(NGS)测序深度。 针对预测测序深度有针对性NGS面板工作流程和深度学习模型(DLM)的概述

    作者: QGS
    1670
    0
  • 深度学习之噪声

    Dropout另一个重要方面是噪声是乘性。如果是固定规模加性噪声,那么加了噪声 ϵ 整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性乘性噪声

    作者: 小强鼓掌
    1045
    3
  • 深度学习:主流框架编程实战》——1.4 优化深度学习方法

    1.4 优化深度学习方法目前,深度学习在多种目标分类识别任务中取得优于传统算法结果,并产生大量优秀模型,使用迁移学习方法将优秀模型应用在其他任务中,可以达到在减少深度学习训练时间前提下,提升分类任务性能,同时降低对训练集规模依赖,关于迁移学习及其实例分析将在第6章进

    作者: 华章计算机
    发表时间: 2019-06-04 19:31:15
    2948
    0
  • 深度学习-语义分割

    而,我们可以轻松地通过重叠方式观察到每个目标。argmax方式也很好理解。如上图所示,每个通道只有0或1,以Person通道为例,红色1表示为Person像素,其他像素均为0。其他通道也是如此,并且不存在同一个像素点在两个以上通道均为1情况。因此,通过argmax就

    作者: @Wu
    642
    0